cv2022
码龄6年
关注
提问 私信
  • 博客:23,024
    社区:213
    23,237
    总访问量
  • 21
    原创
  • 612,331
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:美国
  • 加入CSDN时间: 2018-08-31
博客简介:

jiongjiongai的博客

查看详细资料
个人成就
  • 获得7次点赞
  • 内容获得3次评论
  • 获得21次收藏
创作历程
  • 2篇
    2020年
  • 11篇
    2019年
  • 8篇
    2018年
成就勋章
TA的专栏
  • 矩阵理论
    1篇
  • 集合论
    9篇
  • 机器学习
    3篇
  • 神经网络
    2篇
  • Linux
    2篇
兴趣领域 设置
  • 数据结构与算法
    推荐算法
  • 人工智能
    tensorflow集成学习
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

lintcode 762. 最长公共子序列 II

几个注意点:只需要考虑对结果有效的修改操作。对Q的修改可转化为对P的修改,因此可只考虑对P进行修改的情况。k = 0时,不能修改,因此按照一般的最长子列计算dp[0][i][j]。k > 0时dp[k][i][j] =:4.1 若 P[i] == Q[j],则不需要对P[i]或Q[j]修改,因此取值为 dp[k][i - 1][j - 1]。4.2 否则 P[i] != Q[j...
原创
发布博客 2020.05.06 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

EM算法与证明

这里写自定义目录标题EM算法的证明EM算法步骤EM算法的证明假设 YYY 是观察值,ZZZ 是隐变量,θ\thetaθ 是参数。L(θ)=ln⁡P(Y∣θ)L (\theta) = \ln P(Y | \theta)L(θ)=lnP(Y∣θ)=ln⁡(∑zP(Y,Z∣θ))= \ln \left ( \sum \limits _{z} P(Y, Z | \theta) \right )=l...
原创
发布博客 2020.02.03 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Eigenvectors from eigenvalues的证明

Eigenvectors from eigenvalues的推导论文: Eigenvectors from eigenvalues 提出并证明了一种根据矩阵特征值和子矩阵特征值计算Hermitian矩阵的normed特征向量的每个元素绝对值的方法。由于编写时间有限,本文给出部分详细证明过程:命题对于任意一个 n×nn \times nn×n 的Hermitian矩阵 AAA, 假设特征值为...
原创
发布博客 2019.11.17 ·
662 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Active learning

Active learningMotivationIf a learning algorithm can choose data it wants to learn from, then it can perform better.StepsGether data: Representative of true distribution.Split into seed and unla...
原创
发布博客 2019.11.12 ·
206 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

任何一个关系都是某一个集合上的关系

定理任何一个关系 RRR 都是某一个集合上的关系。∀R,∃A(R⊆A)\forall R, \exists A (R \subseteq A)∀R,∃A(R⊆A)证明∀r∈R(∃x,∃y(r=<x,y>))\forall r \in R (\exists x, \exists y (r = < x, y>))∀r∈R(∃x,∃y(r=<x,y>))于是...
原创
发布博客 2019.10.11 ·
345 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

笛卡尔积的存在性

引理x∈A,y∈B  ⟹  <x,y>∈P(P(A∪B))x \in A, y \in B \implies < x, y > \in \mathcal {P} ( \mathcal {P} (A \cup B))x∈A,y∈B⟹<x,y>∈P(P(A∪B))证明由 x∈A,y∈Bx \in A, y \in Bx∈A,y∈B,得x∈A∪B,y∈A∪Bx...
原创
发布博客 2019.10.10 ·
452 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

有序对的唯一性

有序对的定义<A,B>={{A},{A,B}}<A, B> = \{ \{ A \}, \{ A, B \} \}<A,B>={{A},{A,B}}有序对的唯一性定理<A,B>=<C,D>  ⟺  A=C∧B=D<A, B> = <C, D> \iff A = C \land B = D<A,B>...
原创
发布博客 2019.10.10 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

子集关于交集的分布性定理

定理A⊆(B∩C)  ⟺  A⊆B∧A⊆CA \subseteq ( B \cap C ) \iff A \subseteq B \land A \subseteq CA⊆(B∩C)⟺A⊆B∧A⊆C证明A⊆(B∩C)A \subseteq ( B \cap C )A⊆(B∩C)  ⟺  ∀x∈A(x∈(B∩C))\iff \forall x \in A ( x \in ( B \cap...
原创
发布博客 2019.10.09 ·
351 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

两个补集的并集与交集的相关定理

定理一x∈∪{A−C:C∈F}  ⟺  ∃C∈F(x∈A−C)x \in \cup \{ A - C : C \in F \} \iff \exists C \in F ( x \in A - C)x∈∪{A−C:C∈F}⟺∃C∈F(x∈A−C)证明x∈∪{A−C:C∈F}x \in \cup \{ A - C : C \in F \}x∈∪{A−C:C∈F}  ⟺  ∃B(B∈{A−C:...
原创
发布博客 2019.10.09 ·
1842 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

不存在万有集定理的证明

定理:不存在万有集,即不存在包含一切集合的集合。证明:对应的集合公式为:¬∃A(∀B(B∈A))\lnot \exists {A} (\forall B (B \in A))¬∃A(∀B(B∈A))它等价于命题:∀A(∃B(B∉A))\forall {A} ( \exists B (B
ot\in A))∀A(∃B(B​∈A))我们接下来证明该等价命题:∀A,∃B={x∈A...
原创
发布博客 2019.10.09 ·
832 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

softmax,CrossEntropyLoss 与梯度计算公式

函数 softmax⁡\operatorname {softmax}softmax 的 定义对于任意一个 nnn 维向量 X=(⋮xi⋮)X = \begin {pmatrix} \vdots \\ {x}_{i} \\ \vdots \end {pmatrix}X=⎝⎜⎜⎛​⋮xi​⋮​⎠⎟⎟⎞​ ,定义softmax⁡(X)=(⋮exi∑jexj⋮)\operatorname {softm...
原创
发布博客 2019.03.07 ·
2740 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

在Mac上禁止Google Chrome自动更新

尝试了多种方法都失败了,直到找到了下面这两个方法:方法一:cd /Library/Google/sudo chown nobody:nogroup GoogleSoftwareUpdatesudo chmod 000 GoogleSoftwareUpdatecd ~/Library/Google/sudo chown nobody:nogroup GoogleSoftwareUpdat...
原创
发布博客 2019.02.14 ·
2193 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用bash命令查看 killed process的历史记录

dmesg -T| grep -E -i -B100 'killed process'Where -B100 signifies the number of lines before the kill happened.Omit -T on Mac OS.
原创
发布博客 2019.02.13 ·
401 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Google chrome macbook 2018年版本

发布资源 2019.01.29 ·
zip

Recurrent Neural Networks

Examples of Sequence DataSpeech RecognitionMusic GenerationSentiment ClassificationDNA Sequence AnalysisMachine TranslationVideo Activity RecognitionName Entity RecognitionNotationSymbo...
原创
发布博客 2018.12.06 ·
220 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

差分求导数近似值的比较

设f(x)f(x)f(x) 在点xxx 二阶可导,则:若取点 x,x+Δxx, x + \Delta xx,x+Δx 的值的差分作为导数的近似值,则:f(x+Δx)=f(x)+f′(x)Δx+o(Δx)f(x + \Delta x) = f(x) + f&amp;amp;amp;#x27;(x) {\Delta x} + o \left ({\Delta x} \right )f(x+Δx)=f(x)+f′...
原创
发布博客 2018.11.22 ·
3322 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

基础集合论 6 并集

@TOC(并集)对于任意一个集组 M,M,M, 把 MMM 包含的一切集合合并起来,就是说,把这些集合的元素汇集起来,其结果能否形成一个集合?并集公理给出了肯定的答案:公理五 并集公理对于任意一个集组 M,M,M, 存在一个集合 A,A,A, 恰好包含属于 MMM 中至少一个集合的一切元素,即:∀x(x∈A&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp
原创
发布博客 2018.10.21 ·
875 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

集合论第一章 5 偶集

偶集公理现在看以下问题:对于任意一个集合 a,a,a, 是否存在集合 A,A,A, 恰好以 aaa 为元素?就是说,是否存在集合 A,A,A, 使得:∀x(x∈A&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;ThickSpace;⟺&amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;amp;ThickSpace;x=a)\forall x (x \in A \iff x = a)∀x
原创
发布博客 2018.10.21 ·
598 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

集合论第一章 4 子集

定义集合叫做集合的子集,记为,当且仅当,即当且仅当
原创
发布博客 2018.10.21 ·
657 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

集合论第一章 3 集合论的公式和条件

集合论的公式和条件集合论的公式新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入集合论的公式除了 === 和 ...
原创
发布博客 2018.09.18 ·
2336 阅读 ·
0 点赞 ·
1 评论 ·
2 收藏
加载更多