Understanding LSTM Networks

### LSTM 工作原理 LSTM 是一种特殊的循环神经网络(RNN),能够学习长期依赖关系。传统 RNN 面临梯度消失问题,这使得模型难以捕捉长时间间隔的信息。而 LSTM 通过引入门控机制解决了这一难题[^1]。 #### 主要组成部分 LSTM 的核心结构由三个主要部分组成: - **遗忘门**:决定哪些信息应该被丢弃。输入为前一时刻的状态$h_{t−1}$ 和当前输入$x_t$ ,经过激活函数sigmoid计算得出0到1之间的值表示保留程度[^2]。 - **输入门**:控制新状态$c_t$ 中有多少来自候选集$\tilde{C}_t$ 。同样基于 sigmoid 函数来确定更新比例,并利用 tanh 来生成新的候选项向量[^3]。 - **输出门**:用于调节最终输出$o_t$ 。先经由 sigmoid 判断哪一部分需要输出;再乘以 cell state 经过 tanh 后的结果得到最后的输出值[^4]。 ```python import torch.nn as nn class LSTM(nn.Module): def __init__(self, input_size=57, hidden_layer_size=100, output_size=1): super().__init__() self.hidden_layer_size = hidden_layer_size self.lstm = nn.LSTM(input_size, hidden_layer_size) self.linear = nn.Linear(hidden_layer_size, output_size) def forward(self, input_seq): lstm_out, _ = self.lstm(input_seq.view(len(input_seq), 1, -1)) predictions = self.linear(lstm_out.view(len(input_seq), -1)) return predictions[-1] ``` ### 应用场景 由于其优秀的序列数据处理能力,LSTM 广泛应用于多个领域: - **自然语言处理(NLP)** :如机器翻译、情感分析等任务中表现优异。可以有效理解上下文语义并保持长距离关联性[^5]。 - **时间序列预测** :适用于股票价格走势预估、天气预报等领域。能较好地拟合周期性和趋势性的变化规律[^6]。 - **语音识别** :对于连续音频信号建模具有天然优势,在转录和合成方面发挥重要作用[^7]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值