tensorboardX的使用

这篇博客介绍了如何在Python中使用TensorboardX库来记录训练过程中的关键指标,如变量a和b的变化,并通过全局步长进行跟踪。通过在终端运行特定命令启动Tensorboard,可以实时查看这些图表,从而更好地理解和优化模型的训练过程。

1、首先要安装:

pip install tensorboard (这个过程稍慢,可以选择国内镜像)
pip install tensorboardX

2、编写程序

from tensorboardX import SummaryWriter

# 写入到当前的log文件夹下(先创建一个同级的log文件夹)
writer = SummaryWriter('log')
for i in range(100):
    # a的值是i,步长是i
    writer.add_scalar('a', i, global_step=i)
    writer.add_scalar('b', i**2, global_step=i)

# 关闭读写器
writer.close()

3打开一个终端,进入到log文件夹下执行:

tensorboard --logdir ./
在这里插入图片描述

最终效果:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值