卷积神经网络迁移学习

什么是迁移学习

要训练一个复杂的卷积神经网络也需要几天甚至几周的时间。为了解决标注数据和训练时间的问题,提出了迁移学习。
所谓迁移学习,就是将一个问题上训练好的模型通过简单的调整使其适用于一个新的问题。
简单来说,就是借助原先的经验,加上目前的调整,解决当下的问题。

实现思想

这里我么能使用 Inception-v3 模型来做迁移学习的基础模型。也就是说,inception-v3 在ImageNet 数据集上训练完成之后,在数据集 ImageNet 上表现良好,但是我们想要解决自己的图像分类问题,直接使用 inception-v3 发现,效果并不好,这个时候,可以使用 inception-v3 的全连接层之前的所有曾层(称之为瓶颈层(bottleneck))作为我们模型的特赠提取器,而在之后新增加自己的全连接曾,来时实现新的分类任务。

在训练好的Inception-v3 模型中,因为将瓶颈层的输出再通过一个单层的全连接层神经网络可以很好地区分1000 种类别的图像,所以有理由认为瓶颈层输出的节点向量可以被作为任何图像的一个更加精简且表达能力更强的特征向量。于是,在新数据集上,可以直接利用这个训练好的神经网络对图像进行特征提取,然后再将提取得到的特征向量作为输入来训练一个新的单层全连接神经网络处理新的分类问题。一般来说,在数据量足够的情况下,迁移学习的效果不如完全重新训练。但是迁移学习所需要的训练时间和训练样本数要远远小于训练完整的模型。

TensorFlow 实现迁移学习

# 下载数据集
$ wget http://download.tensorflow.org/example_images/flower_photos.tgz
$ tar xzf flower_photos.tgz

解压之后的文件夹包含了5 个子文件夹,每一个子文件夹的名称为一种花的名称,代表了不同的类别。平均每一种花有734 张图片,每一张图片都是RGB 色彩模式的,大小也不相同。和之前的样例不同,在这一节中给出的程序将直接处理没有整理过的图像数据。

处理数据集

以下代码给出了如何将原始的图像数据整理成模型需要的输入数据

# -*- coding: utf-8 -*-
import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile

# 原始输入数据的目录,这个目录下有5 个子目录,每个子目录底下保存属于该类别的所有图片。
INPUT_DATA = '/path/to/flower_photos'

# 输出文件地址。将整理后的图片数据通过numpy 的格式保存。在第7 章中将更加详细地介
# 绍数据预处理,这里先通过numpy 来保存。
OUTPUT_FILE = '/path/to/flower_processed_data.npy'

# 测试数据和验证数据比例。
VALIDATION_PERCENTAGE = 10
TEST_PERCENTAGE = 10

# 读取数据并将数据分割成训练数据、验证数据和测试数据。
def create_image_lists(sess, testing_percentage, validation_percentage):
    sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
    is_root_dir = True
    # 初始化各个数据集。
    training_images = []
    training_labels = []
    testing_images = []
    testing_labels = []
    validation_images = []
    validation_labels = []
    current_label = 0
    # 读取所有的子目录。
    for sub_dir in sub_dirs:
        if is_root_dir:
            is_root_dir = False
            continue
        # 获取一个子目录中所有的图片文件。
        extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
        file_list = []
        dir_name = os.path.basename(sub_dir)
        for extension in extensions:
            file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
            file_list.extend(glob.glob(file_glob))
            if not file_list: continue
            # 处理图片数据。
            for file_name in file_list:
                # 读取并解析图片,将图片转化为299×299 以便inception-v3 模型来处理。
                # 更多关于图像预处理的内容将在第7 章中介绍。
                image_raw_data = gfile.FastGFile(file_name, 'rb').read()
                image = tf.image.decode_jpeg(image_raw_data)
                if image.dtype != tf.float32:
                    image = tf.image.convert_image_dtype(
                        image, dtype=tf.float32)
                image = tf.image.resize_images(image, [299, 299])
                image_value = sess.run(image)
                # 随机划分数据集。
                chance = np.random.randint(100)
                if chance < validation_percentage:
                    validation_images.append(image_value)
                    validation_labels.append(current_label)
                elif chance < (testing_percentage + validation_percentage):
                    testing_images.append(image_value)
                    testing_labels.append(current_label)
                else:
                    training_images.append(image_value)
                    training_labels.append(current_label)
            current_label += 1
            
	# 将训练数据随机打乱以获得更好的训练效果。
	state = np.random.get_state()
	np.random.shuffle(training_images)
	np.random.set_state(state)
	np.random.shuffle(training_labels)
# 数据整理主函数。
def main():
    with tf.Session() as sess:
        processed_data = create_image_lists(
            sess, TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
        # 通过numpy 格式保存处理后的数据。
        np.save(OUTPUT_FILE, processed_data)

if __name__ == '__main__':
    main()

运行以上代码可以将所有的图片数据划分成训练、验证和测试3 个数据集,并且将图片从原始的jpg 格式转化为inception-v3 模型需要的299×299×3 的数字矩阵。

下载模型

wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
# 解压之后可以得到训练好的模型文件inception_v3.ckpt
tar xzf inception_v3_2016_08_28.tar.gz

迁移学习训练


# -*- coding: utf-8 -*-
import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim
# 加载通过TensorFlow-Slim 定义好的inception_v3 模型。
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3


# 处理好之后的数据文件。
INPUT_DATA = '/path/to/flower_processed_data.npy'
# 保存训练好的模型的路径。这里可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,还可以在训练完最后的全连接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = '/path/to/save_model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = '/path/to/inception_v3.ckpt'
# 定义训练中使用的参数。
LEARNING_RATE = 0.0001
STEPS = 300
BATCH = 32
N_CLASSES = 5
# 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全连接层,因为在
# 新的问题中要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数名称,在fine-tuning 的过程中就是最后的全连接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits,InceptionV3/AuxLogits'
# 获取所有需要从谷歌训练好的模型中加载的参数。

def get_tuned_variables():
    exclusions = [scope.strip() for scope in\
        CHECKPOINT_EXCLUDE_SCOPES.split(',')]
    variables_to_restore = []

    # 枚举inception-v3 模型中所有的参数,然后判断是否需要从加载列表中移除。
    for var in slim.get_model_variables():
        excluded = False
        for exclusion in exclusions:
            if var.op.name.startswith(exclusion):
                excluded = True
                break
        if not excluded:
            variables_to_restore.append(var)
    return variables_to_restore


# 获取所有需要训练的变量列表。
def get_trainable_variables():
    scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
    variables_to_train = []
    # 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
    for scope in scopes:
        variables = tf.get_collection(
            tf.GraphKeys.TRAINABLE_VARIABLES, scope)
        variables_to_train.extend(variables)
    return variables_to_train

def main():
    # 加载预处理好的数据。
    processed_data = np.load(INPUT_DATA)
    training_images = processed_data[0]
    n_training_example = len(training_images)
    training_labels = processed_data[1]
    validation_images = processed_data[2]
    validation_labels = processed_data[3]
    testing_images = processed_data[4]
    testing_labels = processed_data[5]
    print("%d training examples, %d validation examples and %d "
        "testing examples." % (
        n_training_example, len(validation_labels), len(testing_labels)))
    # 定义inception-v3 的输入,images 为输入图片,labels 为每一张图片对应的标签。
    images = tf.placeholder(
        tf.float32, [None, 299, 299, 3],
        name='input_images')
    labels = tf.placeholder(tf.int64, [None], name='labels')
    # 定义inception-v3 模型。因为谷歌给出的只有模型参数取值,所以这里
    # 需要在这个代码中定义inception-v3 的模型结构。虽然理论上需要区分训练和
    # 测试中使用的模型,也就是说在测试时应该使用is_training=False,但是
    # 因为预先训练好的inception-v3 模型中使用的batch normalization 参数与
    # 新的数据会有差异,导致结果很差,所以这里直接使用同一个模型来进行测试。①
    with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
        logits, _ = inception_v3.inception_v3(
            images, num_classes=N_CLASSES)
    # 获取需要训练的变量。
    trainable_variables = get_trainable_variables()
    # 定义交叉熵损失。注意在模型定义的时候已经将正则化损失加入损失集合了。
    tf.losses.softmax_cross_entropy(
        tf.one_hot(labels, N_CLASSES), logits, weights=1.0)
    # 定义训练过程。这里minimize 的过程中指定了需要优化的变量集合。


    train_step = tf.train.RMSPropOptimizer(LEARNING_RATE).minimize(
        tf.losses.get_total_loss())
    # 计算正确率。
    with tf.name_scope('evaluation'):
        correct_prediction = tf.equal(tf.argmax(logits, 1), labels)
        evaluation_step = tf.reduce_mean(tf.cast(
            correct_prediction, tf.float32))
    # 定义加载模型的函数。
    load_fn = slim.assign_from_checkpoint_fn(
        CKPT_FILE,
        get_tuned_variables(),
        ignore_missing_vars=True)

    # 定义保存新的训练好的模型的函数。
    saver = tf.train.Saver()
    with tf.Session() as sess:
        # 初始化没有加载进来的变量。注意这个过程一定要在模型加载之前,否则初始化过程
        # 会将已经加载好的变量重新赋值。
        init = tf.global_variables_initializer()
        sess.run(init)
        # 加载谷歌已经训练好的模型。
        print('Loading tuned variables from %s' % CKPT_FILE)
        load_fn(sess)
        start = 0
        end = BATCH
        for i in range(STEPS):
            # 运行训练过程,这里不会更新全部的参数,只会更新指定的部分参数。
            sess.run(train_step, feed_dict={
                images: training_images[start:end],
                labels: training_labels[start:end]})
            # 输出日志
            if i % 30 == 0 or i + 1 == STEPS:
                saver.save(sess, TRAIN_FILE, global_step=i)
                validation_accuracy = sess.run(evaluation_step, feed_dict={
                    images: validation_images, labels: validation_labels})
                print('Step %d: Validation accuracy = %.1f%%' % (
                    i, validation_accuracy * 100.0))
            # 因为在数据预处理的时候已经做过了打乱数据的操作,所以这里只需要顺序
            # 使用训练数据就好。
            start = end
            if start == n_training_example:
                start = 0
            end = start + BATCH
            if end > n_training_example:
                end = n_training_example
        # 在最后的测试数据上测试正确率。
        test_accuracy = sess.run(evaluation_step, feed_dict={
            images: testing_images, labels: testing_labels})
        print('Final test accuracy = %.1f%%' % (test_accuracy * 100))

if __name__ == '__main__':
tf.app.run()


# 运行以上程序将需要大约3 小时
Step 0: Validation accuracy = 22.8%
Step 30: Validation accuracy = 29.6%
Step 60: Validation accuracy = 63.2%
Step 90: Validation accuracy = 81.2%
Step 120: Validation accuracy = 88.6%
...
Step 299: Validation accuracy = 91.5%
Final test accuracy = 91.9%
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值