C++知识点总结(55):时间优化

一、调试方法

1. 输出调试

cout 是一个强大的调试工具,可以帮助我们查看程序的状态和变量的值。在调试过程中,可以使用 cout 来输出变量的值,以验证程序的正确性。(虽然是第一节课学的

2. 构造样例

构造的样例包括下面的两种:

  • 边界信息
  • 特殊样例

这两种应该说是蹭分 debug 的一个工具,尤其注意分辨 continuebreakreturn 0;。特殊样例一定要考虑极端情况。好吧,实在不行就打表

二、时间优化

1. 前缀和

1.1 概念

仅有两个元素的容斥关系如下:
∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A \cup B| = |A| + |B| - |A \cap B| AB=A+BAB
根据这一公式,我们可以求出二维前缀和的公式:
s i , j = s i − 1 , j + s i , j − 1 − s i − 1 , j − 1 + a i , j s_{i,j}=s_{i-1,j}+s_{i,j-1}-s_{i-1,j-1}+a_{i,j} si,j=si1,j+si,j1si1,j1+ai,j
从而逆推出二维区间和公式:
s x 1 , y 1 ∼ x 2 , y 2 = s x 2 , y 2 − s x 1 − 1 , y 2 − s x 2 , y 1 − 1 + s x 1 − 1 , y 1 − 1 s_{x_1,y_1\sim x_2,y_2}=s_{x_2,y_2}-s_{x_1-1,y_2}-s_{x_2,y_1-1}+s_{x_1-1,y_1-1} sx1,y1x2,y2=sx2,y2sx11,y2sx2,y11+sx11,y11

1.2 例题

Ⅰ 区间最多数码

给定一个长度为 n n n 的数列 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an。小猴会对你进行 q q q 次询问,每次询问要求你计算出在区间 [ l , l + 1 , … , r ] [l,l+1,…,r] [l,l+1,,r] 中出现次数最多的十进制数码是谁( 0 × 9 0\times 9 0×9 中的一个)以及该十进制数码出现了多少次,如果有多个数码出现次数相同,则选择数值最小的数码。

首先我们考虑暴力方法,大致代码如下:

memset(sum,0,sizeof(sum));
for(int i=l;i<=r;i++){
    int num=a[i];
    do{
        sum[num%10]++;
        num/=10;
    }while(num);
}
int ans,cnt=0;
for(int i=0;i<=9;i++)
    if(sum[i]>cnt){
        cnt=sum[i];
        ans=i;
    }
cout<<ans<<" "<<cnt<<endl;

这里新增加一个知识点 do-while结构,也就是先执行然后进行 while 循环条件的判断。这主要是因为 num 0 0 0 的时候也是需要统计 0 0 0 这个数码的。

所以,前缀和&桶 就这样登场了。

参考答案:

#include<bits/stdc++.h>
using namespace std;
int n,q,l,r,num;
int a[200010][10],s[200010][10];
int main(){
    cin>>n>>q;
    for(int i=1;i<=n;i++){
        cin>>num;
        do{
            a[i][num%10]++;
            num/=10;
        }while(num);
    }
    for(int i=1;i<=n;i++)
        for(int j=0;j<10;j++)
            s[i][j]=s[i-1][j]+a[i][j];
    while(q--){
        cin>>l>>r;
        int ans,cnt=0;
        for(int i=0;i<10;i++)
            if(s[r][i]-s[l-1][i]>cnt){
                cnt=s[r][i]-s[l-1][i];
                ans=i;
            }
        cout<<ans<<" "<<cnt<<endl;
    }
    return 0;
}
Ⅱ 双字母字符串

小猴正在挑战一个关于字符串的"简单题":给定 n n n 个只包含大小写字母的字符串,所有字符串的长度均为 2 2 2。要求在这 n n n 个字符串中找出任意两个字符串 s , t s,t s,t,使得 s , t s,t s,t 在不区分大小写的情况下有且只有一个位置上的字母相同,请问这样成对的字符串一共有多少对。

首先还是先上暴力:

#include<bits/stdc++.h>
using namespace std;
int t,n;
string a[100010];
int main(){
    cin>>t;
    while(t--){
        cin>>n;
        for(int i=1;i<=n;i++)cin>>a[i];
        int cnt=0;
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++){
                int match=0;
                for(int k=0;k<2;k++)
                    if(tolower(a[i][k])==tolower(a[j][k]))
                        match++;
                if(match==1)cnt++;
            }
        cout<<cnt<<endl;
    }
    return 0;
}

接下来,上!技!巧!!

考虑两个数组来统计第一个字母和第二个字母的出现次数,以及一个 tot 数组统计每个字符串出现的个数。

#include<bits/stdc++.h>
using namespace std;
const int BYTE=256;
int t,n;
int fst[BYTE],scd[BYTE],tot[BYTE][BYTE];
int main(){
    ios::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);
    cin>>t;
    while(t--){
        cin>>n;
        memset(fst,0,sizeof(fst));
        memset(scd,0,sizeof(scd));
        memset(tot,0,sizeof(tot));
        long long ans=0;
        for(int i=1;i<=n;i++){
            string s;
            cin>>s;
            s[0]=tolower(s[0]),s[1]=tolower(s[1]);
            ans+=fst[s[0]]+scd[s[1]]-tot[s[0]][s[1]]*2;
            fst[s[0]]++,scd[s[1]]++,tot[s[0]][s[1]]++;
        }
        cout<<ans<<endl;
    }
    return 0;
}
Ⅲ Wandering…

给出一个整数数列 a ​ 1 , a 2 , ⋯   , a n a​_1,a_2,\cdots,a_n a1,a2,,an,这个数列可能包含负数。一个机器人初始在数轴的坐标 0 0 0 点,按照以下流程移动:

向正方向移动 a 1 a_1 a1 单位长度。
向正方向移动 a 1 a_1 a1 单位长度,再向正方向移动 a 2 a_2 a2 单位长度。
⋯ \cdots
向正方向移动 a 1 a_1 a1 单位长度,再向正方向移动 a 2 a_2 a2 单位长度。
⋯ \cdots
最后向正方向移动 a n a_n an 单位长度。

你需要求出机器人在整个移动过程中,坐标的最大值。

参考代码(就这么短……)

#include<bits/stdc++.h>
using namespace std;
long long n,pos,ans;
long long a[200010],res[200010],maxOff[200010];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        res[i]=res[i-1]+a[i];
        maxOff[i]=max(maxOff[i-1],res[i]);
        ans=max(ans,pos+maxOff[i]);
        pos+=res[i];
    }
    cout<<ans;
    return 0;
}
Ⅳ 数对数目

给出一个序列,求出其中满足 a i < i < a j < j a_i<i<a_j<j ai<i<aj<j 的个数( 1 ≤ i , j ≤ n 1\le i,j \le n 1i,jn)。

先暴力:

#include<bits/stdc++.h>
using namespace std;
long long n,cnt,a[2000010];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i];
    for(int l=1;l<n;l++)
        for(int r=l+1;r<=n;r++)
            if(a[l]<l&&l<a[r]&&a[r]<r)
                cnt++;
    cout<<cnt;
    return 0;
}

前缀信息优化:单调性为 a[i]<i

#include<bits/stdc++.h>
using namespace std;
long long n,ans;
long long a[2000010],s[2000010];
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        s[i]=s[i-1]+(a[i]<i);
        if(a[i]<i)ans+=s[a[i]-1];
    }
    cout<<ans;
    return 0;
}

2. 排序

例题

选择排序过程

还记得我们之前打的暴力:

#include <iostream>
#include <vector>
using namespace std;

void selectionSort(vector<int>& A, int q) {
    int n = A.size();
    for (int i = 0; i < q; i++) {
        int minIndex = i;
        for (int j = i + 1; j < n; j++) {
            if (A[j] < A[minIndex]) {
                minIndex = j;
            }
        }
        swap(A[i], A[minIndex]);
    }
}

int main() {
    int n, m;
    cin >> n >> m;
    vector<int> A(n);
    for (int i = 0; i < n; i++) {
        cin >> A[i];
    }
    for (int i = 0; i < m; i++) {
        int q;
        cin >> q;
        selectionSort(A, q);
        for (int j = 0; j < n; j++) {
            cout << A[j] << " ";
        }
        cout << endl;
    }
    return 0;
}

现在来优化。

#include<bits/stdc++.h>
using namespace std;
int n,m,iter,lmt;
int num[100010],num2idx[100010];
int main(){
    cin>>n>>m;
    for(int i=1;i<=n;i++){
        cin>>num[i];
        num2idx[num[i]]=i;
    }
    while(m--){
        cin>>lmt;
        while(iter<lmt){
            //iter永远是num
            iter++;
            int idx=num2idx[iter];
            swap(num[idx],num[iter]);
            num2idx[iter]=iter;
            num2idx[num[idx]]=idx;
        }
        for(int i=1;i<=n;i++)cout<<num[i]<<" ";
        cout<<endl;
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值