时间优化
一、调试方法
1. 输出调试
cout 是一个强大的调试工具,可以帮助我们查看程序的状态和变量的值。在调试过程中,可以使用 cout 来输出变量的值,以验证程序的正确性。(虽然是第一节课学的)
2. 构造样例
构造的样例包括下面的两种:
- 边界信息
- 特殊样例
这两种应该说是蹭分 debug 的一个工具,尤其注意分辨 continue、break、return 0;。特殊样例一定要考虑极端情况。好吧,实在不行就打表
二、时间优化
1. 前缀和
1.1 概念
仅有两个元素的容斥关系如下:
∣
A
∪
B
∣
=
∣
A
∣
+
∣
B
∣
−
∣
A
∩
B
∣
|A \cup B| = |A| + |B| - |A \cap B|
∣A∪B∣=∣A∣+∣B∣−∣A∩B∣
根据这一公式,我们可以求出二维前缀和的公式:
s
i
,
j
=
s
i
−
1
,
j
+
s
i
,
j
−
1
−
s
i
−
1
,
j
−
1
+
a
i
,
j
s_{i,j}=s_{i-1,j}+s_{i,j-1}-s_{i-1,j-1}+a_{i,j}
si,j=si−1,j+si,j−1−si−1,j−1+ai,j
从而逆推出二维区间和公式:
s
x
1
,
y
1
∼
x
2
,
y
2
=
s
x
2
,
y
2
−
s
x
1
−
1
,
y
2
−
s
x
2
,
y
1
−
1
+
s
x
1
−
1
,
y
1
−
1
s_{x_1,y_1\sim x_2,y_2}=s_{x_2,y_2}-s_{x_1-1,y_2}-s_{x_2,y_1-1}+s_{x_1-1,y_1-1}
sx1,y1∼x2,y2=sx2,y2−sx1−1,y2−sx2,y1−1+sx1−1,y1−1
1.2 例题
Ⅰ 区间最多数码
给定一个长度为 n n n 的数列 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,⋯,an。小猴会对你进行 q q q 次询问,每次询问要求你计算出在区间 [ l , l + 1 , … , r ] [l,l+1,…,r] [l,l+1,…,r] 中出现次数最多的十进制数码是谁( 0 × 9 0\times 9 0×9 中的一个)以及该十进制数码出现了多少次,如果有多个数码出现次数相同,则选择数值最小的数码。
首先我们考虑暴力方法,大致代码如下:
memset(sum,0,sizeof(sum));
for(int i=l;i<=r;i++){
int num=a[i];
do{
sum[num%10]++;
num/=10;
}while(num);
}
int ans,cnt=0;
for(int i=0;i<=9;i++)
if(sum[i]>cnt){
cnt=sum[i];
ans=i;
}
cout<<ans<<" "<<cnt<<endl;
这里新增加一个知识点 do-while结构,也就是先执行然后进行 while 循环条件的判断。这主要是因为 num 是
0
0
0 的时候也是需要统计
0
0
0 这个数码的。
所以,前缀和&桶 就这样登场了。
参考答案:
#include<bits/stdc++.h>
using namespace std;
int n,q,l,r,num;
int a[200010][10],s[200010][10];
int main(){
cin>>n>>q;
for(int i=1;i<=n;i++){
cin>>num;
do{
a[i][num%10]++;
num/=10;
}while(num);
}
for(int i=1;i<=n;i++)
for(int j=0;j<10;j++)
s[i][j]=s[i-1][j]+a[i][j];
while(q--){
cin>>l>>r;
int ans,cnt=0;
for(int i=0;i<10;i++)
if(s[r][i]-s[l-1][i]>cnt){
cnt=s[r][i]-s[l-1][i];
ans=i;
}
cout<<ans<<" "<<cnt<<endl;
}
return 0;
}
Ⅱ 双字母字符串
小猴正在挑战一个关于字符串的"简单题":给定 n n n 个只包含大小写字母的字符串,所有字符串的长度均为 2 2 2。要求在这 n n n 个字符串中找出任意两个字符串 s , t s,t s,t,使得 s , t s,t s,t 在不区分大小写的情况下有且只有一个位置上的字母相同,请问这样成对的字符串一共有多少对。
首先还是先上暴力:
#include<bits/stdc++.h>
using namespace std;
int t,n;
string a[100010];
int main(){
cin>>t;
while(t--){
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
int cnt=0;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++){
int match=0;
for(int k=0;k<2;k++)
if(tolower(a[i][k])==tolower(a[j][k]))
match++;
if(match==1)cnt++;
}
cout<<cnt<<endl;
}
return 0;
}
接下来,上!技!巧!!
考虑两个数组来统计第一个字母和第二个字母的出现次数,以及一个 tot 数组统计每个字符串出现的个数。
#include<bits/stdc++.h>
using namespace std;
const int BYTE=256;
int t,n;
int fst[BYTE],scd[BYTE],tot[BYTE][BYTE];
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cin>>t;
while(t--){
cin>>n;
memset(fst,0,sizeof(fst));
memset(scd,0,sizeof(scd));
memset(tot,0,sizeof(tot));
long long ans=0;
for(int i=1;i<=n;i++){
string s;
cin>>s;
s[0]=tolower(s[0]),s[1]=tolower(s[1]);
ans+=fst[s[0]]+scd[s[1]]-tot[s[0]][s[1]]*2;
fst[s[0]]++,scd[s[1]]++,tot[s[0]][s[1]]++;
}
cout<<ans<<endl;
}
return 0;
}
Ⅲ Wandering…
给出一个整数数列 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,⋯,an,这个数列可能包含负数。一个机器人初始在数轴的坐标 0 0 0 点,按照以下流程移动:
向正方向移动 a 1 a_1 a1 单位长度。
向正方向移动 a 1 a_1 a1 单位长度,再向正方向移动 a 2 a_2 a2 单位长度。
⋯ \cdots ⋯
向正方向移动 a 1 a_1 a1 单位长度,再向正方向移动 a 2 a_2 a2 单位长度。
⋯ \cdots ⋯
最后向正方向移动 a n a_n an 单位长度。
你需要求出机器人在整个移动过程中,坐标的最大值。
参考代码(就这么短……)
#include<bits/stdc++.h>
using namespace std;
long long n,pos,ans;
long long a[200010],res[200010],maxOff[200010];
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
res[i]=res[i-1]+a[i];
maxOff[i]=max(maxOff[i-1],res[i]);
ans=max(ans,pos+maxOff[i]);
pos+=res[i];
}
cout<<ans;
return 0;
}
Ⅳ 数对数目
给出一个序列,求出其中满足 a i < i < a j < j a_i<i<a_j<j ai<i<aj<j 的个数( 1 ≤ i , j ≤ n 1\le i,j \le n 1≤i,j≤n)。
先暴力:
#include<bits/stdc++.h>
using namespace std;
long long n,cnt,a[2000010];
int main(){
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int l=1;l<n;l++)
for(int r=l+1;r<=n;r++)
if(a[l]<l&&l<a[r]&&a[r]<r)
cnt++;
cout<<cnt;
return 0;
}
前缀信息优化:单调性为 a[i]<i
#include<bits/stdc++.h>
using namespace std;
long long n,ans;
long long a[2000010],s[2000010];
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
s[i]=s[i-1]+(a[i]<i);
if(a[i]<i)ans+=s[a[i]-1];
}
cout<<ans;
return 0;
}
2. 排序
例题
选择排序过程
还记得我们之前打的暴力:
#include <iostream>
#include <vector>
using namespace std;
void selectionSort(vector<int>& A, int q) {
int n = A.size();
for (int i = 0; i < q; i++) {
int minIndex = i;
for (int j = i + 1; j < n; j++) {
if (A[j] < A[minIndex]) {
minIndex = j;
}
}
swap(A[i], A[minIndex]);
}
}
int main() {
int n, m;
cin >> n >> m;
vector<int> A(n);
for (int i = 0; i < n; i++) {
cin >> A[i];
}
for (int i = 0; i < m; i++) {
int q;
cin >> q;
selectionSort(A, q);
for (int j = 0; j < n; j++) {
cout << A[j] << " ";
}
cout << endl;
}
return 0;
}
现在来优化。
#include<bits/stdc++.h>
using namespace std;
int n,m,iter,lmt;
int num[100010],num2idx[100010];
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>num[i];
num2idx[num[i]]=i;
}
while(m--){
cin>>lmt;
while(iter<lmt){
//iter永远是num
iter++;
int idx=num2idx[iter];
swap(num[idx],num[iter]);
num2idx[iter]=iter;
num2idx[num[idx]]=idx;
}
for(int i=1;i<=n;i++)cout<<num[i]<<" ";
cout<<endl;
}
return 0;
}
189

被折叠的 条评论
为什么被折叠?



