【啊哈!算法】之五、归并排序

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Jofranks/article/details/7802447

归并排序是利用"归并"技术来进行排序。归并是指将若干个已排序的子文件合并成一个有序的文件。

这是采用分治算法的一个典型的应用!

这里要讲两种:两路归并排序,归并排序~!

归并排序是一种稳定的排序算法;

用顺序存储结构。也易于在链表上实现。


算法复杂度:

     比较操作的次数介于(n log n)/2n log n - n + 1。 赋值操作的次数是(2nlogn)。最优时间复杂度O(n),最差时间复杂度O(nlogn),平均时间复杂度O(nlogn)。 归并算法的空间复杂度为:Θ (n)


归并操作的过程如下:

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针达到序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾
(来自维基百科)


一、两路归并排序

我们有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。

为了减少数据移动次数,不妨采用一个临时工作数组TEMP,将中间排序结果暂时保存在数组中,等归并结束后,再将TEMP数组值复制给A。

现在我们来看一下过程:

归并过程中,设置p1,p2和p3三个指针,其初值分别指向三个有序区的起始位置。归并时依次比较A[p1]和A[p2]的关键字,取关键字较小的记录复制到TEMP[p3]中,然后将被复制记录的指针p1或p2加1,以及指向复制位置的指针p3加1。

重复这一过程直至有一个已复制完毕,此时将另一序列中剩余数据依次复制到TEMP中即可。


OK,下面给出测试代码:

#include<iostream>
using namespace std;

void marge2(int *a, int low, int mi, int N)
{
	int i = low, m = mi + 1;
	int p = 0;
	int *TEMP = new int((N - low + 1)*sizeof(int));
	if(!TEMP)
		return ;
	//三个指针,a中的比较大小放到temp中
	for(;i <= mi && m <= N;)
		TEMP[p++] = (a[i] <= a[m])?a[i++]:a[m++];
	//前面的剩下的元素放入TEMP中
	for(;i <= mi;)
		TEMP[p++] = a[i++];
	//后面的剩下的元素放入TEMP中
	while(m <= N)
		TEMP[p++] = a[m++];
	//将所有元素放入A中
	for(p = 0, i = low; i <= N; p++, i++)
		a[i] = TEMP[p];

}

void puta(int *a, int N)
{
	for(int i = 0; i < N; i++)
		cout << a[i] << endl;
}

int main(void)
{
	int a[] = {12, 15, 16, 17, 3, 4, 14, 36};
	marge2(a, 0, 3, 8);
	
	puta(a, 8);
	return 0;
}


二、归并排序

自顶向下和自底向上

1、自顶向下

 他采用分治算法

设有数组A[low...high]

步骤:

1、分解: 和二分一样,取数组的中间点mid=(low+high)/2

2、求解: 分别对数组A[low..mid]和A[mid+1...high]进行归并排序

3、组合:将已排序的A[low..mid]和A[mid+1...high]组合成最终的有序组。


下面看一下图解:


ok,根据图示应该很清楚了,下面给出代码:

void mergesort(int *a, int low, int high)
{
	int mid;
	if(low < high)
	{
		mid = (low + high) / 2;
		mergesort(a, low, mid);
		mergesort(a, mid + 1, high);
		merge2(a, low, mid, high);
	}
}

int main(void)
{
	int a[] = {12, 15, 16, 17, 3, 4, 14, 36};
	//merge2(a, 0, 3, 8);
	mergesort(a, 0, 7);
	puta(a, 8);
	return 0;
}

此段代码接上文代码,因为有调用函数!



2、自底向上

思想: (我们还是设数组A[low...high])

第1趟归并排序时,将数列A[1..n]看作是n个长度为1的有序序列,将这些序列两两归并,若n为偶数,则得到[n/2]个长度为2的有序序列;若n为奇数,则最后一个子序列不参与归并。第2趟归并则是将第1趟归并所得到的有序序列两两归并。如此反复,直到最后得到一个长度为n的有序文件为止。


要注意的是: 调用归并操作将相邻的一对子文件进行归并时,必须对子文件的个数可能是奇数、以及最后一个子文件的长度小于length这两种特殊情况进行特殊处理:

1、若子文件个数为奇数,则最后一个子文件无须和其它子文件归并(即本趟轮空);

2、若子文件个数为偶数,则要注意最后一对子文件中后一子文件的区间上界是n。


下面面来看一下动画演示:归并排序自底向上


ok下面给出代码:

void mergepass(int *a, int n, int length)
{
	int i;
	for(i = 0; i + 2*length - 1 <= n; i = i + 2*length)
		merge2(a, i, i + length - 1, i + 2*length - 1);
	 if(i + length - 1 < n)
		 merge2(a, i, i + length - 1, n);
}

void mergesort2(int *a, int n)
{
	for(int i = 1; i < n; i *= 2)
		mergepass(a, n, i);
}

int main(void)
{
	int a[] = {12, 15, 16, 17, 3, 4, 14, 36};
	//merge2(a, 0, 3, 8);
	mergesort2(a, 7);
	puta(a, 8);
	return 0;
}


2012/8/14

jofranks 于南昌

展开阅读全文

没有更多推荐了,返回首页