jzoj6486 向日葵人生 (仙人掌)

题意

给你一个仙人掌,随机选一个点排列。按照这个排列的顺序将所有点删掉,求每个点被删掉时连通块大小之和的期望。
n ≤ 400 n\leq 400 n400

分析

  • 树上一条路径可行的概率是1/len.
  • 环上做一个容斥:路径A可行+路径B可行-路径AB均可行。
  • 仙人掌上做dp容斥即可。

仙人掌上有几个处理的技巧:

  • 仙人掌不需要tarjan. 暴力建出所有点向环顶连边的树。
  • 做dp的时候,所有边可以被分为三类:树边,儿子向环顶,环顶向儿子。
  • 对后两类做一个特殊讨论即可。

O ( n 3 ) O(n^3) O(n3)

#include <bits/stdc++.h>
using namespace std;
const int mo = 998244353, N = 410;
typedef long long ll;
int n, m;
ll jc[N], njc[N], inv[N];
ll ksm(ll x, ll y) {
	ll ret = 1;
	for(; y; y >>= 1) {
		if (y & 1) ret = ret * x % mo;
		x = x * x % mo;
	}
	return ret;
}

int len[N];
ll f[N][N];
int no[N], cir[N], cnt, cirbel[N];
int final[N], nex[N * 8], to[N * 8], tot = 1;

void link(int x, int y) {
	to[++tot] = y, nex[tot] = final[x], final[x] = tot;
}

int dfn[N], stm, p[N], e[N * 8]; //p是指向父亲的边
int cirfa[N], dep[N];
void dfs(int x) {
	dfn[x] = ++ stm;
	for(int i = final[x]; i; i = nex[i]) {
		if (i == p[x]) continue;
		int y = to[i];
		if (dfn[y] == 0) {
			p[y] = i ^ 1;
			dep[y] = dep[x] + 1;
			dfs(y);
		} else if(dfn[y] < dfn[x]) {
			e[i] = e[i ^ 1] = 1;
			++cnt;
			for(int z = x, w = 1; z != y; z = to[p[z]], w++) {
				no[z] = w;
				len[z] = dep[x] - dep[y] + 1;
				link(z, y), link(y, z);
				e[p[z]] = e[p[z] ^ 1] = 1;
				cirfa[z] = y;
				cirbel[z] = cnt;
			}
		}
	}
}

ll ans;
void go(int x, int from) {
	for(int i = 1; i <= n; i ++) {
		ans = (ans + inv[i] * f[x][i]) % mo;
	}
	for(int i = final[x]; i; i = nex[i]) if (e[i] == 0) {
		int y = to[i];
		if (y == from) continue;
		if (y != cirfa[x] && cirfa[y] != x) { //树边
			for(int i = 1; i <= n; i++) f[y][i] = f[x][i - 1];
			go(y, x);
		} else {
			int ori = 0, a = 0, b = 0, cirlen = 0;
			if (cirfa[x] == y) {
				ori = x, a = no[x], b = len[x] - no[x], cirlen = len[x];
			} else {
				if (cirbel[y] == cirbel[from]) {
					cirlen = len[y];
					ori = from, a = (no[from] - no[y] + len[y]) % cirlen, b = cirlen - a;
				} else {
					ori = x, a = no[y], b = len[y] - no[y], cirlen = len[y];
				}
			}
			for(int i = 1; i <= n; i++) {
				if (i - a > 0) f[y][i] = f[ori][i - a];
				if (i - b > 0) f[y][i] = (f[y][i] + f[ori][i - b]) % mo;
				if (i - cirlen + 1 > 0) f[y][i] = (f[y][i] - f[ori][i - cirlen + 1]) % mo;
			}
			go(y, x);
		}
	}
}

int main() {
	freopen("falldream.in","r",stdin);
	// freopen("falldream.out","w",stdout);
	cin >> n >> n >> m;
	for(int i = 1; i <= m; i++) {
		int x, y; scanf("%d %d", &x, &y);
		link(x, y), link(y, x);
	}
	dfs(1);
	jc[0] = 1;
	for(int i = 1; i <= n; i++) jc[i] = jc[i - 1] * i % mo;
	njc[n] = ksm(jc[n], mo - 2);
	for(int i = n - 1; ~i; i--) njc[i] = njc[i + 1] * (i + 1) % mo;
	for(int i = 1; i <= n; i++) inv[i] = njc[i] * jc[i - 1] % mo;
	for(int r = 1; r <= n; r++) {
		memset(f,0,sizeof f);
		f[r][1] = 1;
		go(r, 0);
	}
	cout << (ans + mo) % mo << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值