在水一方

炕上等你

MapReduce:超大机群上的简单数据处理(1)

摘要
MapReduce是一个编程模型,和处理,产生大数据集的相关实现.用户指定一个map函数处理一个key/value对,从而产生中间的key/value对集.然后再指定一个reduce函数合并所有的具有相同中间key的中间value.下面将列举许多可以用这个模型来表示的现实世界的工作.
以这种方式写的程序能自动的在大规模的普通机器上实现并行化.这个运行时系统关心这些细节:分割输入数据,在机群上的调度,机器的错误处理,管理机器之间必要的通信.这样就可以让那些没有并行分布式处理系统经验的程序员利用大量分布式系统的资源.
我们的MapReduce实现运行在规模可以灵活调整的由普通机器组成的机群上,一个典型的MapReduce计算处理几千台机器上的以TB计算的数据.程序员发现这个系统非常好用:已经实现了数以百计的MapReduce程序,每天在Google的机群上都有1000多个MapReduce程序在执行.
1.介绍
在过去的5年里,作者和Google的许多人已经实现了数以百计的为专门目的而写的计算来处理大量的原始数据,比如,爬行的文档,Web请求日志,等等.为了计算各种类型的派生数据,比如,倒排索引,Web文档的图结构的各种表示,每个主机上爬行的页面数量的概要,每天被请求数量最多的集合,等等.很多这样的计算在概念上很容易理解.然而,输入的数据量很大,并且只有计算被分布在成百上千的机器上才能在可以接受的时间内完成.怎样并行计算,分发数据,处理错误,所有这些问题综合在一起,使得原本很简介的计算,因为要大量的复杂代码来处理这些问题,而变得让人难以处理.
作为对这个复杂性的回应,我们设计一个新的抽象模型,它让我们表示我们将要执行的简单计算,而隐藏并行化,容错,数据分布,负载均衡的那些杂乱的细节,在一个库里.我们的抽象模型的灵感来自Lisp和许多其他函数语言的map和reduce的原始表示.我们认识到我们的许多计算都包含这样的操作:在我们输入数据的逻辑记录上应用map操作,来计算出一个中间key/value对集,在所有具有相同key的value上应用reduce操作,来适当的合并派生的数据.功能模型的使用,再结合用户指定的map和reduce操作,让我们可以非常容易的实现大规模并行化计算,和使用再次执行作为初级机制来实现容错.
这个工作的主要贡献是通过简单有力的接口来实现自动的并行化和大规模分布式计算,结合这个接口的实现来在大量普通的PC机上实现高性能计算.
第二部分描述基本的编程模型,并且给一些例子.第三部分描述符合我们的基于集群的计算环境的MapReduce的接口的实现.第四部分描述我们觉得编程模型中一些有用的技巧.第五部分对于各种不同的任务,测量我们实现的性能.第六部分探究在Google内部使用MapReduce作为基础来重写我们的索引系统产品.第七部分讨论相关的,和未来的工作.
2.编程模型
计算利用一个输入key/value对集,来产生一个输出key/value对集.MapReduce库的用户用两个函数表达这个计算:map和reduce.
用户自定义的map函数,接受一个输入对,然后产生一个中间key/value对集.MapReduce库把所有具有相同中间key I的中间value聚合在一起,然后把它们传递给reduce函数.
用户自定义的reduce函数,接受一个中间key I和相关的一个value集.它合并这些value,形成一个比较小的value集.一般的,每次reduce调用只产生0或1个输出value.通过一个迭代器把中间value提供给用户自定义的reduce函数.这样可以使我们根据内存来控制value列表的大小.
2.1 实例
考虑这个问题:计算在一个大的文档集合中每个词出现的次数.用户将写和下面类似的伪代码:
map(String key,String value):
//key:文档的名字
//value:文档的内容
for each word w in value:
    EmitIntermediate(w,"1");
reduce(String key,Iterator values):
//key:一个词
//values:一个计数列表
int result=0;
for each v in values:
   result+=ParseInt(v);
Emit(AsString(resut));
map函数产生每个词和这个词的出现次数(在这个简单的例子里就是1).reduce函数把产生的每一个特定的词的计数加在一起.
另外,用户用输入输出文件的名字和可选的调节参数来填充一个mapreduce规范对象.用户然后调用MapReduce函数,并把规范对象传递给它.用户的代码和MapReduce库链接在一起(用C++实现).附录A包含这个实例的全部文本.
2.2类型
即使前面的伪代码写成了字符串输入和输出的term格式,但是概念上用户写的map和reduce函数有关联的类型:
map(k1,v1) ->list(k2,v2)
reduce(k2,list(v2)) ->list(v2)
例如,输入的key,value和输出的key,value的域不同.此外,中间key,value和输出key,values的域相同.
我们的C++实现传递字符串来和用户自定义的函数交互,并把它留给用户的代码,来在字符串和适当的类型间进行转换.
2.3更多实例
这里有一些让人感兴趣的简单程序,可以容易的用MapReduce计算来表示.
分布式的Grep(UNIX工具程序, 可做文件内的字符串查找):如果输入行匹配给定的样式,map函数就输出这一行.reduce函数就是把中间数据复制到输出.
计算URL访问频率:map函数处理web页面请求的记录,输出(URL,1).reduce函数把相同URL的value都加起来,产生一个(URL,记录总数)的对.
倒转网络链接图:map函数为每个链接输出(目标,源)对,一个URL叫做目标,包含这个URL的页面叫做源.reduce函数根据给定的相关目标URLs连接所有的源URLs形成一个列表,产生(目标,源列表)对.
每个主机的术语向量:一个术语向量用一个(词,频率)列表来概述出现在一个文档或一个文档集中的最重要的一些词.map函数为每一个输入文档产生一个(主机名,术语向量)对(主机名来自文档的URL).reduce函数接收给定主机的所有文档的术语向量.它把这些术语向量加在一起,丢弃低频的术语,然后产生一个最终的(主机名,术语向量)对.
倒排索引:map函数分析每个文档,然后产生一个(词,文档号)对的序列.reduce函数接受一个给定词的所有对,排序相应的文档IDs,并且产生一个(词,文档ID列表)对.所有的输出对集形成一个简单的倒排索引.它可以简单的增加跟踪词位置的计算.
分布式排序:map函数从每个记录提取key,并且产生一个(key,record)对.reduce函数不改变任何的对.这个计算依赖分割工具(在4.1描述)和排序属性(在4.2描述).
3实现
MapReduce接口可能有许多不同的实现.根据环境进行正确的选择.例如,一个实现对一个共享内存较小的机器是合适的,另外的适合一个大NUMA的多处理器的机器,而有的适合一个更大的网络机器的集合.
这部分描述一个在Google广泛使用的计算环境的实现:用交换机连接的普通PC机的大机群.我们的环境是:
1.Linux操作系统,双处理器,2-4GB内存的机器.
2.普通的网络硬件,每个机器的带宽或者是百兆或者千兆,但是平均小于全部带宽的一半.
3.因为一个机群包含成百上千的机器,所有机器会经常出现问题.
4.存储用直接连到每个机器上的廉价IDE硬盘.一个从内部文件系统发展起来的分布式文件系统被用来管理存储在这些磁盘上的数据.文件系统用复制的方式在不可靠的硬件上来保证可靠性和有效性.
5.用户提交工作给调度系统.每个工作包含一个任务集,每个工作被调度者映射到机群中一个可用的机器集上.
3.1执行预览
通过自动分割输入数据成一个有M个split的集,map调用被分布到多台机器上.输入的split能够在不同的机器上被并行处理.通过用分割函数分割中间key,来形成R个片(例如,hash(key) mod R),reduce调用被分布到多台机器上.分割数量(R)和分割函数由用户来指定.
图1显示了我们实现的MapReduce操作的全部流程.当用户的程序调用MapReduce的函数的时候,将发生下面的一系列动作(下面的数字和图1中的数字标签相对应):
   1.在用户程序里的MapReduce库首先分割输入文件成M个片,每个片的大小一般从 16到64MB(用户可以通过可选的参数来控制).然后在机群中开始大量的拷贝程序.
     2.这些程序拷贝中的一个是master,其他的都是由master分配任务的worker.有M 个map任务和R个reduce任务将被分配.管理者分配一个map任务或reduce任务给一个空闲的worker.
3.一个被分配了map任务的worker读取相关输入split的内容.它从输入数据中分析出key/value对,然后把key/value对传递给用户自定义的map函数.由map函数产生的中间key/value对被缓存在内存中.
4.缓存在内存中的key/value对被周期性的写入到本地磁盘上,通过分割函数把它们写入R个区域.在本地磁盘上的缓存对的位置被传送给master,master负责把这些位置传送给reduce worker.
5.当一个reduce worker得到master的位置通知的时候,它使用远程过程调用来从map worker的磁盘上读取缓存的数据.当reduce worker读取了所有的中间数据后,它通过排序使具有相同key的内容聚合在一起.因为许多不同的key映射到相同的reduce任务,所以排序是必须的.如果中间数据比内存还大,那么还需要一个外部排序.
     6.reduce worker迭代排过序的中间数据,对于遇到的每一个唯一的中间key,它把key和相关的中间value集传递给用户自定义的reduce函数.reduce函数的输出被添加到这个reduce分割的最终的输出文件中.
7.当所有的map和reduce任务都完成了,管理者唤醒用户程序.在这个时候,在用户程序里的MapReduce调用返回到用户代码.
在成功完成之后,mapreduce执行的输出存放在R个输出文件中(每一个reduce任务产生一个由用户指定名字的文件).一般,用户不需要合并这R个输出文件成一个文件--他们经常把这些文件当作一个输入传递给其他的MapReduce调用,或者在可以处理多个分割文件的分布式应用中使用他们.
3.2master数据结构
master保持一些数据结构.它为每一个map和reduce任务存储它们的状态(空闲,工作中,完成),和worker机器(非空闲任务的机器)的标识.
master就像一个管道,通过它,中间文件区域的位置从map任务传递到reduce任务.因此,对于每个完成的map任务,master存储由map任务产生的R个中间文件区域的大小和位置.当map任务完成的时候,位置和大小的更新信息被接受.这些信息被逐步增加的传递给那些正在工作的reduce任务.
3.3容错
因为MapReduce库被设计用来使用成百上千的机器来帮助处理非常大规模的数据,所以这个库必须要能很好的处理机器故障.
worker故障
master周期性的ping每个worker.如果master在一个确定的时间段内没有收到worker返回的信息,那么它将把这个worker标记成失效.因为每一个由这个失效的worker完成的map任务被重新设置成它初始的空闲状态,所以它可以被安排给其他的worker.同样的,每一个在失败的worker上正在运行的map或reduce任务,也被重新设置成空闲状态,并且将被重新调度.
在一个失败机器上已经完成的map任务将被再次执行,因为它的输出存储在它的磁盘上,所以不可访问.已经完成的reduce任务将不会再次执行,因为它的输出存储在全局文件系统中.
当一个map任务首先被worker A执行之后,又被B执行了(因为A失效了),重新执行这个情况被通知给所有执行reduce任务的worker.任何还没有从A读数据的reduce任务将从worker B读取数据.
MapReduce可以处理大规模worker失败的情况.例如,在一个MapReduce操作期间,在正在运行的机群上进行网络维护引起80台机器在几分钟内不可访问了,MapReduce master只是简单的再次执行已经被不可访问的worker完成的工作,继续执行,最终完成这个MapReduce操作.
master失败
可以很容易的让管理者周期的写入上面描述的数据结构的checkpoints.如果这个master任务失效了,可以从上次最后一个checkpoint开始启动另一个master进程.然而,因为只有一个master,所以它的失败是比较麻烦的,因此我们现在的实现是,如果master失败,就中止MapReduce计算.客户可以检查这个状态,并且可以根据需要重新执行MapReduce操作.
在错误面前的处理机制
当用户提供的map和reduce操作对它的输出值是确定的函数时,我们的分布式实现产生,和全部程序没有错误的顺序执行一样,相同的输出.
我们依赖对map和reduce任务的输出进行原子提交来完成这个性质.每个工作中的任务把它的输出写到私有临时文件中.一个reduce任务产生一个这样的文件,而一个map任务产生R个这样的文件(一个reduce任务对应一个文件).当一个map任务完成的时候,worker发送一个消息给master,在这个消息中包含这R个临时文件的名字.如果master从一个已经完成的map任务再次收到一个完成的消息,它将忽略这个消息.否则,它在master的数据结构里记录这R个文件的名字.
当一个reduce任务完成的时候,这个reduce worker原子的把临时文件重命名成最终的输出文件.如果相同的reduce任务在多个机器上执行,多个重命名调用将被执行,并产生相同的输出文件.我们依赖由底层文件系统提供的原子重命名操作来保证,最终的文件系统状态仅仅包含一个reduce任务产生的数据.
我们的map和reduce操作大部分都是确定的,并且我们的处理机制等价于一个顺序的执行的这个事实,使得程序员可以很容易的理解程序的行为.当map或/和reduce操作是不确定的时候,我们提供虽然比较弱但是合理的处理机制.当在一个非确定操作的前面,一个reduce任务R1的输出等价于一个非确定顺序程序执行产生的输出.然而,一个不同的reduce任务R2的输出也许符合一个不同的非确定顺序程序执行产生的输出.
考虑map任务M和reduce任务R1,R2的情况.我们设定e(Ri)为已经提交的Ri的执行(有且仅有一个这样的执行).这个比较弱的语义出现,因为e(R1)也许已经读取了由M的执行产生的输出,而e(R2)也许已经读取了由M的不同执行产生的输出.
3.4存储位置
在我们的计算机环境里,网络带宽是一个相当缺乏的资源.我们利用把输入数据(由GFS管理)存储在机器的本地磁盘上来保存网络带宽.GFS把每个文件分成64MB的一些块,然后每个块的几个拷贝存储在不同的机器上(一般是3个拷贝).MapReduce的master考虑输入文件的位置信息,并且努力在一个包含相关输入数据的机器上安排一个map任务.如果这样做失败了,它尝试在那个任务的输入数据的附近安排一个map任务(例如,分配到一个和包含输入数据块在一个switch里的worker机器上执行).当运行巨大的MapReduce操作在一个机群中的一部分机器上的时候,大部分输入数据在本地被读取,从而不消耗网络带宽.
3.5任务粒度
象上面描述的那样,我们细分map阶段成M个片,reduce阶段成R个片.M和R应当比worker机器的数量大许多.每个worker执行许多不同的工作来提高动态负载均衡,也可以加速从一个worker失效中的恢复,这个机器上的许多已经完成的map任务可以被分配到所有其他的worker机器上.
在我们的实现里,M和R的范围是有大小限制的,因为master必须做O(M+R)次调度,并且保存O(M*R)个状态在内存中.(这个因素使用的内存是很少的,在O(M*R)个状态片里,大约每个map任务/reduce任务对使用一个字节的数据).
此外,R经常被用户限制,因为每一个reduce任务最终都是一个独立的输出文件.实际上,我们倾向于选择M,以便每一个单独的任务大概都是16到64MB的输入数据(以便上面描述的位置优化是最有效的),我们把R设置成我们希望使用的worker机器数量的小倍数.我们经常执行MapReduce计算,在M=200000,R=5000,使用2000台工作者机器的情况下.
3.6备用任务
一个落后者是延长MapReduce操作时间的原因之一:一个机器花费一个异乎寻常地的长时间来完成最后的一些map或reduce任务中的一个.有很多原因可能产生落后者.例如,一个有坏磁盘的机器经常发生可以纠正的错误,这样就使读性能从30MB/s降低到3MB/s.机群调度系统也许已经安排其他的任务在这个机器上,由于计算要使用CPU,内存,本地磁盘,网络带宽的原因,引起它执行MapReduce代码很慢.我们最近遇到的一个问题是,一个在机器初始化时的Bug引起处理器缓存的失效:在一个被影响的机器上的计算性能有上百倍的影响.
我们有一个一般的机制来减轻这个落后者的问题.当一个MapReduce操作将要完成的时候,master调度备用进程来执行那些剩下的还在执行的任务.无论是原来的还是备用的执行完成了,工作都被标记成完成.我们已经调整了这个机制,通常只会占用多几个百分点的机器资源.我们发现这可以显著的减少完成大规模MapReduce操作的时间.作为一个例子,将要在5.3描述的排序程序,在关闭掉备用任务的情况下,要比有备用任务的情况下多花44%的时间.
阅读更多
个人分类: 技术空间
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭