大数据项目(三)————电商项目介绍(一)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Jorocco/article/details/81195747

1、项目介绍

本项目主要用于互联网电商企业中,使用Spark技术开发的大数据统计分析平台,对电商网站的各种用户行为(访问行为、购物行为、广告点击行为等)进行复杂的分析。用统计分析出来的数据,辅助公司中的PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用大数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。

本项目使用了Spark技术生态栈中最常用的三个技术框架,Spark Core、Spark SQL和Spark Streaming,进行离线计算和实时计算业务模块的开发。实现了包括用户访问session分析、页面单跳转化率统计、热门商品离线统计、广告流量实时统计4个业务模块。

2、模块介绍

1、用户访问session分析:该模块主要是对用户访问session进行统计分析,包括session的聚合指标计算、按时间比例随机抽取session、获取每天点击、下单和购买排名前10的品类、并获取top10品类的点击量排名前10的session。该模块可以让产品经理、数据分析师以及企业管理层形象地看到各种条件下的具体用户行为以及统计指标,从而对公司的产品设计以及业务发展战略做出调整。主要使用Spark Core实现。

2、页面单跳转化率统计:该模块主要是计算关键页面之间的单步跳转转化率,涉及到页面切片算法以及页面流匹配算法。该模块可以让产品经理、数据分析师以及企业管理层看到各个关键页面之间的转化率,从而对网页布局,进行更好的优化设计。主要使用Spark Core实现。

3、热门商品离线统计:该模块主要实现每天统计出各个区域的top3热门商品。然后使用Oozie进行离线统计任务的定时调度;使用Zeppeline进行数据可视化的报表展示。该模块可以让企业管理层看到公司售卖的商品的整体情况,从而对公司的商品相关的战略进行调整。主要使用Spark SQL实现。

4、广告流量实时统计:该模块负责实时统计公司的广告流量,包括广告展现流量和广告点击流量。实现动态黑名单机制,以及黑名单过滤;实现滑动窗口内的各城市的广告展现流量和广告点击流量的统计;实现每个区域每个广告的点击流量实时统计;实现每个区域top3点击量的广告的统计。主要使用Spark Streaming实现。

3、大数据项目基本流程
这里写图片描述

在实际企业项目中的使用架构:
1、J2EE的平台(美观的前端页面),通过这个J2EE平台可以让使用者,提交各种各样的分析任务,其中就包括一个模块,就是用户访问session分析模块;可以指定各种各样的筛选条件,比如年龄范围、职业、城市等等。。
2、J2EE平台接收到了执行统计分析任务的请求之后,会调用底层的封装了spark-submit的shell脚本(Runtime、Process),shell脚本进而提交我们编写的Spark作业。
3、Spark作业获取使用者指定的筛选参数,然后运行复杂的作业逻辑,进行该模块的统计和分析。
4、Spark作业统计和分析的结果,会写入MySQL中,指定的表。
5、最后,J2EE平台,使用者可以通过前端页面(美观),以表格、图表的形式展示和查看MySQL中存储的该统计分析任务的结果数据。

4、大数据项目开发基本流程三步走

第一个步骤就是数据调研(就是对底层基于的基础数据的表结构进行调研、分析和研究);然后本节课,相当于是项目开发流程的第二个步骤,就是需求分析(在实际的企业中,需求分析,可能会比这里更加复杂很多;在互联网企业中,需求分析,首先就是要跟PM,就是产品经理,也就是负责设计你开发的大数据平台产品的人,去大量开会,去沟通需求的细节;此外,你自己还得根据产品经理编写的需求文档,可能还会自己设计一些产品原型图出来,让你看,去看,去研究;然后第三点,可能还需要作为一个项目的技术leader,去跟你的项目组内的成员,去讲解和讨论需求,要确保组内所有成员,都对需求清晰的理解了)

展开阅读全文

没有更多推荐了,返回首页