joshualiunsw
码龄9年
求更新 关注
提问 私信
  • 博客:53,492
    53,492
    总访问量
  • 9
    原创
  • 6
    粉丝
  • 1
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
加入CSDN时间: 2016-08-04

个人简介:主要是为了对技术积累和梳理

博客简介:

joshualiunsw的博客

查看详细资料
个人成就
  • 获得13次点赞
  • 内容获得2次评论
  • 获得59次收藏
创作历程
  • 2篇
    2020年
  • 8篇
    2016年
成就勋章
TA的专栏
  • 复习
    5篇
  • 研究
    1篇
  • 总结
    2篇
  • Web

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 0

TA参与的活动 0

兴趣领域 设置
  • 大数据
    hadoop
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

软件项目中的生命周期模型入门

曾经用对比举例的方式写过一篇通俗的敏捷开发介绍,虽然比较零基础,但确实内容不够丰富。这次就一次性总结下几个常见的模型。1. 瀑布模型按部就班一步一步地做,经典的计划设计实施的步骤。前期需要完整的需求细节,否则后期变更成本很高。过程:(可行性分析、需求分析)、(概要设计、详细设计)、编码、测试、运行维护2. 原型模型找一个类似的成品系统样例,通过修改这个原型向真实需求上去靠拢,如果过程中发现偏离需求,可更换原型再进行尝试。当用户需求无法很清除地获得时,原型方法能有效节约成本,达到项
原创
发布博客 2020.07.21 ·
270 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

从零开始理解敏捷开发——一个理解概念的思维方式

从零开始理解敏捷开发认识敏捷开发1. 问题:是什么2. 想要什么特点3. 为了实现特点4. 回到定义很久没有写博客了,前面一直有接触敏捷开发的项目,也算是有些理解和感悟,这篇也是我在工作生活中有感而写的入门解释,作为理解一些相对抽象概念的通用思维方法,也借敏捷开发为例做下知识总结。后面可能还会对敏捷开发和其他的软件开发模式进行介绍,还有其他的一些分类等。认识敏捷开发在软件行业实际项目中,敏捷开发经常被提及。然而,对于刚刚开始从事软件开发行业的新人,可能对于敏捷开发只是听说过这样的状态。本文中博主将从最
原创
发布博客 2020.06.23 ·
655 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

推荐系统的常见方法总结

1.Content basedTF-IDF     Term Frequency - Inverse Document Frequency     词频-逆向文件频率     倾向于过滤掉常见的词语,保留重要的词语          i 指术语(特征),j 指文件(项目)          D是文件(项目)的集合,分母部分指术语t出现过的文件的集
原创
发布博客 2016.09.06 ·
1142 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

有关梯度下降和随机剃度下降的思考

随即梯度下降和梯度下降的主要区别是剃度下降方法在参数训练时将所有数据训练一遍以后才更新各个新的梯度值因此虽然更新“精准”,但是对计算时间和能力要求高随机剃度下降的思路是在每次训练单个数据是进行一次梯度更新,而且选取的训练是随机的这样做避免了过大的运算,但是导致训练噪声所以是否可以考虑对部分数据进行训练而不是单个或全部呢,假设有10个训练数据,如果我们把他们分成2
原创
发布博客 2016.09.06 ·
811 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

对最小二乘的总结

最小二乘法是衡量一个特定模型与数据点接近程度的普遍方法它是指计算真实数据和预测数据间的平方差平方保证了所有的结果都是正数
原创
发布博客 2016.08.16 ·
893 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Google PageRank算法解析

PageRank算法是Google进行搜索排名的重要依据。该算法早在十几年前就谷歌广泛应用在搜索引擎上本文将讨论有关此算法的一些细节
翻译
发布博客 2016.08.08 ·
4351 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

启发式搜索1

启发式搜索内容总结1包括了基本的启发式搜索概念与算法BFS, DFS, Greedy, UCS, Dijkstra, A*, IDA*
原创
发布博客 2016.08.06 ·
2520 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

alpha-beta剪枝的代码实现

之前在极大化极小算法minimax说得不够清楚而且也没有附带伪代码,所以这里再写一篇专门关于剪枝的bloghttp://blog.csdn.net/joshualiunsw/article/details/52131507————————————————————————————————————————————————现在已经有了普通的minimax的伪代码, 由于下文中需要用到α, β
原创
发布博客 2016.08.06 ·
6741 阅读 ·
3 点赞 ·
0 评论 ·
15 收藏

电影推荐系统设计思路(简单易懂的算法理解)

我在留学期间设计的一个电影推荐系统的设计思路,因为我觉得比较有趣,所以放出来也算是一个怀念Method of measuring the quality recommendation system
原创
发布博客 2016.08.06 ·
15693 阅读 ·
5 点赞 ·
1 评论 ·
20 收藏

极小化极大算法

极小化极大(minimax)算法顾名思义,就是让最大得情况最小,这里的最大一般是指最差的情况,比如游戏中最不利的情况。该算法需要满足零和博弈,初略的解释就是若有两个玩家进行游戏,如果其中一方得到利益那么另一方就会失去利益,游戏利益的总和为0(某些情况下为常数)。因此,零和的约束条件也使得该算法在很多游戏中图体现出很好的效果,比如大多数的棋类游戏。
原创
发布博客 2016.08.05 ·
20405 阅读 ·
3 点赞 ·
0 评论 ·
30 收藏