1.二分类
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
iris=datasets.load_iris()
X=iris['data'][:,3:]
#原本的data有4列数据,只取最后一列
y=(iris['target']==2).astype(np.int)
#原本的target中只含有0,1,2,表示3种类别,将为2的标注为1,其余为0
lr=LogisticRegression()
lr.fit(X,y)
x_test=np.linspace(0,3,100).reshape(100,1)
y_pred=lr.predict(x_test)
print(y_pred)
"""
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
"""
y_pro=lr.predict_proba(x_test)
print(y_pro)
"""
属于0和属于1的概率
[[9.99250016e-01 7.49984089e-04]
[9.99144871e-01 8.55129018e-04]
[9.99025000e-01 9.75000485e-04]
[9.98888343e-01 1.11165677e-03]
........
"""
2.多分类
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
iris=datasets.load_iris()
X=iris['data'][:,3:]
#原本的data有4列数据,只取最后一列
y=iris['target']
#原本的target中只含有0,1,2,表示3种类别
lr=LogisticRegression()
lr.fit(X,y)
x_test=np.linspace(0,3,100).reshape(100,1)
y_pred=lr.predict(x_test)
print(y_pred)
"""
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
"""
y_pred_pro=lr.predict_proba(x_test)
print(y_pred_pro)
"""
属于0,1,2的概率
[[9.67660990e-01 3.23050060e-02 3.40043474e-05]
[9.63252635e-01 3.67035398e-02 4.38250330e-05]
[9.58268505e-01 4.16750483e-02 5.64468999e-05]
[9.52640632e-01 4.72867156e-02 7.26528769e-05]
"""
3.评估
#返回一个0-1的数
lr.score(x_test,y_test)