萌芽起步:初期阶段(1945 - 1960 年代)
回溯到计算机发展的黎明期,1945 年至 1960 年代,计算机宛如科学与军事领域的 “神秘巨兽”。当时的计算机体积庞大,占据着巨大的空间,造价高昂,只有少数科研机构和军事部门有能力使用。以 ENIAC 为例,它占地 170 平方米,重达 30 吨,每秒仅能进行 5000 次加法运算 。软件在这个时期还处于萌芽阶段,开发过程简单而直接。程序员们编写代码时,测试只是顺带的工作,基本没有系统的测试流程。他们主要凭借自己的经验和主观判断,简单检查程序能否实现基本的计算功能,比如简单的数值计算、数据排序等,测试方法极为原始,完全依赖人工手动操作,效率低下且准确性难以保证。
商业初现:应用初期(1960 - 1970 年代)
随着时间的推移,到了 1960 年代至 1970 年代,商业计算机系统如同初升的朝阳,开始在市场中崭露头角。IBM System/360 系列计算机的推出,标志着计算机开始大规模进入商业领域。企业利用计算机进行数据处理、财务管理等工作,软件的功能和规模不断扩大。这时候,软件的复杂性显著增加,对软件质量的要求也水涨船高,软件测试的需求逐渐浮出水面。但测试工作仍主要由程序员兼任,他们缺乏专业的测试知识和技能,只是简单地运行程序,查看是否有明显的错误提示,很少考虑到程序在不同环境下的兼容性、数据边界情况等复杂问题,导致很多潜在的软件缺陷难以被发现,软件质量隐患重重。
专业成型:稳定阶段(1970 - 1980 年代)
进入 1970 年代至 1980 年代,软件行业迎来了重大的变革与突破。人们深刻认识到软件测试的专业性和重要性,不能再将其视为软件开发的附属品。于是,专业的测试团队开始逐步组建,软件测试正式成为一个独立的职业。这些专业测试人员接受了系统的培训,学习了各种科学的测试方法和技术。例如等价类划分,把程序的输入数据划分为若干个等价类,从每个等价类中选取一个代表性的数据作为测试用例,大大提高了测试效率;边界值分析则着重关注输入数据的边界情况,因为在边界处往往容易出现错误。他们运用这些方法,对软件进行全面、细致的测试,从功能正确性、性能表现到兼容性等多个维度进行评估,大幅提高了软件缺陷的发现概率,软件质量得到了质的提升,软件测试行业也逐渐走向成熟,形成了一套相对完善的工作流程和规范。
规范确立:标准阶段(1990 年代至今)
从 1990 年代起,软件测试领域开启了标准化的新纪元。在全球范围内,多种软件测试标准和框架如繁星般相继诞生。ISO/IEC 12207 国际标准,从软件项目管理、开发、维护等各个阶段,为软件生命周期过程提供了全面且细致的指导,使软件企业在开发过程中有了统一的规范和流程参考;IEEE 829 则详细规定了软件测试计划、测试用例、测试报告等各类文档的内容和格式,确保测试工作的规范性和可追溯性;CMMI 能力成熟度模型集成,从过程管理、项目管理、质量管理等多个维度,对软件组织的能力进行评估和改进,帮助企业不断提升软件研发和测试的能力;ISTQB 国际软件测试资质认证,为软件测试人员提供了专业的能力认证体系,培养和认证了大量具备专业素养的测试人才。与此同时,测试工具和技术也在持续革新,自动化测试技术逐渐崭露头角。像 Selenium、LoadRunner 等自动化测试工具,能够模拟用户的各种操作,自动执行大量重复性的测试任务,不仅提高了测试效率,还能保证测试结果的准确性和一致性。
敏捷融合:敏捷测试阶段(2001 年至今)
2001 年以后,敏捷开发方法和迭代式开发理念如风暴般席卷全球软件行业。在这种全新的开发模式下,敏捷测试方法应运而生。敏捷测试强调测试与开发的深度融合,不再是开发完成后才进行测试,而是从项目的一开始,测试人员就参与其中。在每一次迭代开发过程中,测试人员与开发人员紧密合作,共同制定测试计划、编写测试用例。测试人员及时对新开发的功能进行测试,一旦发现问题,立即反馈给开发人员进行修复。通过这种方式,软件能够快速迭代,不断满足用户的需求,大大提高了软件的交付速度和质量。例如,在一个移动应用开发项目中,开发团队和测试团队每周进行一次迭代,测试人员在迭代过程中对新功能进行快速测试,及时发现并解决了界面交互不友好、数据加载缓慢等问题,确保了应用能够按时上线并获得用户的好评。
工具革新:自动化测试工具普及(2000 年以后)
迈入新世纪,互联网技术和移动通信技术的飞速发展,让软件行业进入了一个高速发展的快车道。软件产品的更新换代速度前所未有的快,以手机 APP 为例,平均每个月都会有新版本发布。在这种快节奏的环境下,传统的手动测试方式由于效率低下、耗时过长,已经无法满足快速交付的需求。于是,各种自动化测试工具如雨后春笋般大量涌现,并广泛应用于功能测试、性能测试、兼容性测试等多个方面。这些工具不仅能够快速执行大量的测试用例,还能精准记录测试结果,生成详细的测试报告。例如,在一个电商网站的性能测试中,自动化测试工具模拟了成千上万的用户同时访问网站,快速检测出了网站在高并发情况下的性能瓶颈,为优化网站性能提供了有力的数据支持。此外,云计算、大数据等新技术的应用,为软件测试带来了全新的挑战与机遇。云计算提供了弹性的测试资源,让测试人员可以按需获取计算资源,降低测试成本;大数据技术则可以对海量的测试数据进行分析,挖掘出潜在的软件缺陷和用户行为模式,推动测试技术不断创新发展。
持续演进:DevOps 文化下的持续测试(近年来)
近年来,DevOps 文化蓬勃兴起,它打破了开发、运维及质量保证团队之间的壁垒,强调团队之间的紧密协作,共同致力于实现快速交付高质量产品的目标。在这一文化背景下,“持续测试” 成为行业发展的新潮流。持续测试要求将测试活动无缝融入软件开发的每一个环节,从代码编写阶段的单元测试,到集成阶段的集成测试,再到部署前的系统测试和性能测试,全程进行不间断的测试。通过持续集成和持续交付工具,如 Jenkins、GitLab CI/CD 等,实现代码的快速集成和测试,一旦发现缺陷,立即通知开发人员进行修复。这样不仅保障了软件质量,还加快了产品的上市速度。然而,随着 DevOps 开发过程中安全问题日益突出,如数据泄露、恶意攻击等事件频发,许多公司开始从 DevOps 转向 DevsecOps 开发模式。在开发流程中融入安全相关环节,例如在代码编写阶段进行安全代码审查,在测试阶段增加安全漏洞扫描等,进一步提升软件的安全性和可靠性,确保软件在快速交付的同时,能够有效抵御各种安全威胁。
看完这篇内容,麻烦大家点个赞或关注、转发。
———————————————————-
点击上方可订阅关注我:蚂蚁质量!也可以加我微信进微信交流群。如果你觉得公众号对你有帮助,欢迎转发、推荐给他人。
————————————————————
-END-
作者简介:风随水
一个从事十五年测试和质量管理者
曾经深圳乃至全国最大最活跃软件测试QQ群群主
致力于质量管理和体系规范