🌐 JSON是什么?为什么重要?
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,如同数据世界的“通用货币”:
-
📦 结构化数据快递员:在程序间安全传递复杂数据
-
🌍 跨平台通行证:支持所有主流编程语言(Python/Java/JS等)
-
⚡ 高效传输:文本格式比二进制更易读且体积更小
应用场景全景图:
pie
title JSON使用场景占比
"Web API交互" : 45
"配置文件" : 25
"数据持久化" : 20
"日志记录" : 10
📚 JSON数据结构速成课
1. 基础语法规则
{
"name": "张三",
"age": 25,
"isStudent": false,
"courses": ["数学", "Python"],
"address": {
"city": "北京",
"postcode": "100000"
}
}
-
🔑 键值对结构:
"key": value
-
📌 数据类型:
JSON类型 Python对应类型 Number int/float String str Boolean bool Array list Object dict null None
🐍 Python中的JSON操作
1. 基础转换方法
import json
# Python对象 → JSON字符串(序列化)
data = {"name": "张三", "age": 25}
json_str = json.dumps(data, ensure_ascii=False, indent=2)
print(json_str)
# 输出:
# {
# "name": "张三",
# "age": 25
# }
# JSON字符串 → Python对象(反序列化)
restored_data = json.loads(json_str)
print(restored_data["name"]) # 输出:张三
2. 文件读写操作
# 写入JSON文件
with open("data.json", "w", encoding="utf-8") as f:
json.dump(data, f, indent=4)
# 读取JSON文件
with open("data.json", "r", encoding="utf-8") as f:
loaded_data = json.load(f)
🔧 高级技巧与实战
1. 处理复杂对象
from datetime import datetime
class User:
def __init__(self, name, reg_date):
self.name = name
self.reg_date = reg_date
# 自定义编码器
class CustomEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, datetime):
return obj.isoformat()
elif isinstance(obj, User):
return {"name": obj.name, "reg_date": obj.reg_date}
return super().default(obj)
user = User("李四", datetime.now())
json_str = json.dumps(user, cls=CustomEncoder)
print(json_str) # {"name": "李四", "reg_date": "2023-10-10T15:30:00.123456"}
2. JSONPath查询
使用jsonpath-ng进行高级数据提取:
from jsonpath_ng import parse
data = {
"store": {
"book": [
{"title": "Python基础", "price": 59},
{"title": "JSON精通", "price": 45}
]
}
}
# 查找所有价格低于50的书籍
expr = parse('$.store.book[?(@.price < 50)]')
matches = [match.value for match in expr.find(data)]
print(matches) # [{'title': 'JSON精通', 'price': 45}]
🚀 性能优化方案
graph LR
A[原生json模块] -->|处理小数据| B[标准用法]
A -->|大数据量| C[ujson模块]
A -->|复杂结构| D[orjson模块]
性能对比测试
import timeit
import ujson, orjson
data = [{"id": i, "value": "test"*100} for i in range(10000)]
def test(module):
return module.dumps(data)
print("json:", timeit.timeit(lambda: test(json), number=100))
print("ujson:", timeit.timeit(lambda: test(ujson), number=100))
print("orjson:", timeit.timeit(lambda: test(orjson), number=100))
典型输出结果:
json: 1.234s
ujson: 0.876s
orjson: 0.512s
⚠️ 安全注意事项
-
数据反序列化风险:永远不要直接加载不可信来源的JSON
-
安全加载方式:
# 危险方式 data = json.loads(untrusted_str) # 安全方式 from json.decoder import JSONDecodeError try: data = json.loads(untrusted_str) except JSONDecodeError: print("非法JSON数据")
📌 最佳实践清单
-
统一编码:始终明确指定
ensure_ascii=False
和encoding="utf-8"
-
格式美化:使用
indent
参数提升可读性 -
版本控制:在JSON文件中添加
version
字段 -
数据校验:使用JSON Schema定义数据结构