Transformer架构逐层深度解析:从输入到输出的完整计算过程

Transformer模型(扩展阅读:Transformer 是未来的技术吗?-CSDN博客初探 Transformer-CSDN博客)自2017年由Vaswani等人提出以来,已成为自然语言处理领域的基石性架构。本文将深入剖析Transformer的每一层结构,详细讲解从输入到输出的完整计算流程,不遗漏任何关键细节。

输入表示层:词嵌入与位置编码

Transformer的输入处理包含两个关键步骤:词嵌入和位置编码。

词嵌入(Word Embedding)

词嵌入将离散的词汇符号映射为连续的向量表示。假设词汇表大小为V,嵌入维度为d_{model},则嵌入矩阵为:

E \in \mathbb{R}^{V \times d_{\text{model}}}

对于输入序列中的每个词x_i,其嵌入向量为:

e_i = E[x_i] \in \mathbb{R}^{d_{\text{model}}}

计算示例:
假设:

  • 词汇表大小V=10,000

  • 嵌入维度d_{model}=512

  • 输入序列["the", "cat"],对应词汇索引x_1=5, x_2=20

随机初始化嵌入矩阵E:

E = np.random.randn(10000, 512) * 0.02  # 标准差0.02的正态分布

获取词向量:

e1 = E[5]   # shape (512,)
e2 = E[20]  # shape (512,)

位置编码(Positional Encoding)

由于Transformer不包含循环或卷积结构,需要显式注入位置信息。位置编码使用不同频率的正弦和余弦函数:

PE_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right)

PE_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d_{\text{model}}}}\right)

其中pos是位置,i是维度索引。最终输入表示是词嵌入和位置编码的逐元素和:

h_i^0 = e_i + PE(pos_i)

位置编码的设计使得模型可以学习到相对位置关系,且能够处理比训练时更长的序列。

计算示例:
计算pos=0(第一个词)的位置编码:

position = 0
d_model = 512
pe = np.zeros(512)
for i in range(0, 512, 2):
    denominator = np.power(10000, 2*i/d_model)
    pe[i] = np.sin(position / denominator)
    pe[i+1] = np.cos(position / (10000**(2*i/d_model)))

最终输入表示:

h1_0 = e1 + pe(pos=0)  # shape (512,)
h2_0 = e2 + pe(pos=1)  # shape (512,)
H_0 = np.stack([h1_0, h2_0])  # shape (2, 512)

编码器结构:多头注意力与前馈网络

Transformer编码器由N个相同层堆叠而成,每层包含两个子层:多头自注意力机制和位置全连接前馈网络。

多头自注意力机制(Multi-Head Self-Attention)

注意力基础计算

首先将输入h_i通过线性变换得到查询(Q)、键(K)、值(V)向量:

Q = hW^Q, \quad K = hW^K, \quad V = hW^V

其中参数矩阵维度为:

W^Q,W^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W^V \in \mathbb{R}^{d_{\text{model}} \times d_v}

注意力分数计算(扩展阅读:来聊聊Q、K、V的计算-CSDN博客):

\text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V

计算示例:
假设:

  • d_k = d_v = 64

  • h=8个头

  • 当前输入H_0 shape (2,512)

初始化参数矩阵:

W_Q = np.random.randn(512, 64) * 0.1
W_K = np.random.randn(512, 64) * 0.1
W_V = np.random.randn(512, 64) * 0.1

计算Q,K,V:

Q = H_0 @ W_Q  # shape (2,64)
K = H_0 @ W_K  # shape (2,64)
V = H_0 @ W_V  # shape (2,64)

计算注意力分数:

attn_scores = Q @ K.T / np.sqrt(64)  # shape (2,2)
attn_weights = softmax(attn_scores)  # 按行softmax
output = attn_weights @ V  # shape (2,64)

多头注意力实现

多头注意力并行执行h次不同的注意力计算:

head_i=Attention(QW_i^Q,KW_i^K,VW_i^V)

\text{MultiHead}(Q,K,V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O

其中参数矩阵:

W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}, W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}

通常设置d_k = d_v = \frac{d_{model}}{h},保持计算量不变。

计算示例:
假设8个头的输出:

head1 = np.random.randn(2,64)  # 模拟第一个头输出
...
head8 = np.random.randn(2,64)  # 模拟第八个头输出
multi_head = np.concatenate([head1,...,head8], axis=-1)  # shape (2,512)
W_O = np.random.randn(512,512) * 0.1
output = multi_head @ W_O  # shape (2,512)

残差连接与层归一化

每个子层后都应用残差连接和层归一化:

h' = \text{LayerNorm}(h + \text{Sublayer}(h))

层归一化计算:

\text{LayerNorm}(x) = \gamma \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} + \beta

其中\mu\sigma是均值和方差,\gamma\beta是可学习参数。

计算示例:
假设:

  • 输入h shape (2,512)

  • 子层输出sublayer_out shape (2,512)

残差连接:

residual = h + sublayer_out  # shape (2,512)

层归一化计算:

mean = np.mean(residual, axis=-1, keepdims=True)  # shape (2,1)
var = np.var(residual, axis=-1, keepdims=True)   # shape (2,1)
gamma = np.ones(512)  # 初始化为1
beta = np.zeros(512)  # 初始化为0
h_out = gamma * (residual - mean) / np.sqrt(var + 1e-5) + beta

位置全连接前馈网络(Position-wise FFN)

前馈网络对每个位置独立应用相同的两层全连接:

\text{FFN}(x) = \text{ReLU}(xW_1 + b_1)W_2 + b_2

其中参数维度:

W_1 \in \mathbb{R}^{d_{\text{model}} \times d_{ff}}, W_2 \in \mathbb{R}^{d_{ff} \times d_{\text{model}}}

通常d_{ff} = 4 \times d_{model},提供足够的表达能力。

计算示例:
参数设置:

d_ff = 2048
W1 = np.random.randn(512, 2048) * 0.1
b1 = np.zeros(2048)
W2 = np.random.randn(2048, 512) * 0.1
b2 = np.zeros(512)

计算过程:

x = np.random.randn(2,512)  # 输入
hidden = np.maximum(0, x @ W1 + b1)  # ReLU激活
output = hidden @ W2 + b2  # shape (2,512)

解码器结构:掩码自注意力与编码器-解码器注意力

解码器也由N个相同层堆叠,但包含三种子层:掩码自注意力、编码器-解码器注意力和前馈网络。

掩码自注意力(Masked Self-Attention)

为防止解码器看到未来信息,在自注意力计算中应用掩码:

\text{Mask}(x) = \begin{cases} x & \text{if } i \leq j \\ -\infty & \text{otherwise} \end{cases}

计算时:

\text{Attention}(Q,K,V) = \text{softmax}\left(Mask\left(\frac{QK^T}{\sqrt{d_k}}\right)\right)V

计算示例:
假设解码器输入3个词:

Q = np.random.randn(3,64)
K = np.random.randn(3,64)
attn_scores = Q @ K.T / np.sqrt(64)  # shape (3,3)

应用掩码:

mask = np.triu(np.ones((3,3)), k=1)  # 上三角矩阵
masked_scores = attn_scores - 1e9 * mask  # 未来位置设为-∞
attn_weights = softmax(masked_scores)  # 按行softmax

编码器-解码器注意力(Encoder-Decoder Attention)

此处的查询来自解码器前一层的输出,而键和值来自编码器的最终输出:

Q = h_{dec}W^Q, \quad K = h_{enc}W^K, \quad V = h_{enc}W^V

这使得解码器可以关注输入序列的相关部分。

输出层:线性变换与softmax

最终输出层将解码器输出转换为预测词的概率分布:

  • 线性变换:将d_{model}维向量映射到词汇表大小V

z=hW_z+b_z \quad W_z \in \mathbb{R}^{d_{model} \times V}

  • Softmax归一化:

p(x) = \text{softmax}(z) = \frac{e^{z_i}}{\sum_{j=1}^V e^{z_j}}

计算示例:
假设:

  • 解码器最后输出 shape (3,512)

  • 词汇表V=10000

W_out = np.random.randn(512, 10000) * 0.1
logits = decoder_output @ W_out  # shape (3,10000)
probs = softmax(logits, axis=-1)  # 得到每个词的概率分布

关键技术与优化细节

缩放点积注意力

缩放因子\frac{1}{\sqrt{d_k}}防止点积过大导致softmax梯度消失:

\frac{QK^T}{\sqrt{d_k}}

多头注意力的优势

多头机制允许模型:

  • 在不同位置共同关注来自不同表示子空间的信息

  • 学习多种依赖关系模式(如局部/全局、语法/语义)

残差连接的作用

残差连接:

  • 缓解深层网络梯度消失问题

  • 使模型能够学习恒等映射,保留原始信息

层归一化的位置

Transformer采用后归一化(Post-LN):

  • 归一化在残差连接之后进行

  • 相比前归一化(Pre-LN)训练更稳定,但需要更仔细的参数初始化

数学视角下的完整前向传播

给定输入序列X=(x_1,...,x_n),完整计算流程:

输入嵌入:

H^0 = [e_{x_1}+PE(1), \ldots, e_{x_n}+PE(n)]^T

编码器每层l=1...L计算:

\tilde{H}^l = \text{MHA}(\text{LN}(H^{l-1})) + H^{l-1}

H^l = \text{FFN}(\text{LN}(\tilde{H}^l)) + \tilde{H}^l

解码器每层l=1...L计算:

\tilde{D}^l = \text{MMHA}(\text{LN}(D^{l-1})) + D^{l-1}

\hat{D}^l = \text{MHA}(\text{LN}(\tilde{D}^l), H^L) + \tilde{D}^l

D^l = \text{FFN}(\text{LN}(\hat{D}^l)) + \hat{D}^l

输出概率:

p(y_t|y_{<t},X) = \text{softmax}(W_o D^L_t)

扩展讨论:Transformer的变体与改进

高效注意力机制

原始自注意力复杂度O(n²)限制了长序列处理,改进包括:

位置表示的改进

  • 相对位置编码(如Transformer-XL)

  • 可学习的位置嵌入

  • 旋转位置编码(RoPE)

模型架构演进

  • 编码器-解码器(BERT/GPT)

  • 仅解码器(GPT系列)

  • 仅编码器(BERT)

结语

Transformer架构通过自注意力机制实现了强大的序列建模能力,其精心设计的各层组件协同工作,克服了传统RNN/CNN的局限性。理解每一层的数学细节对于模型调优和架构创新至关重要。随着研究的深入,Transformer仍在不断演进,但其核心思想将继续影响深度学习的发展方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值