Transformer模型(扩展阅读:Transformer 是未来的技术吗?-CSDN博客、初探 Transformer-CSDN博客)自2017年由Vaswani等人提出以来,已成为自然语言处理领域的基石性架构。本文将深入剖析Transformer的每一层结构,详细讲解从输入到输出的完整计算流程,不遗漏任何关键细节。
输入表示层:词嵌入与位置编码
Transformer的输入处理包含两个关键步骤:词嵌入和位置编码。
词嵌入(Word Embedding)
词嵌入将离散的词汇符号映射为连续的向量表示。假设词汇表大小为,嵌入维度为
,则嵌入矩阵为:
对于输入序列中的每个词,其嵌入向量为:
计算示例:
假设:
-
词汇表大小
-
嵌入维度
-
输入序列["the", "cat"],对应词汇索引
随机初始化嵌入矩阵E:
E = np.random.randn(10000, 512) * 0.02 # 标准差0.02的正态分布
获取词向量:
e1 = E[5] # shape (512,)
e2 = E[20] # shape (512,)
位置编码(Positional Encoding)
由于Transformer不包含循环或卷积结构,需要显式注入位置信息。位置编码使用不同频率的正弦和余弦函数:
其中是位置,
是维度索引。最终输入表示是词嵌入和位置编码的逐元素和:
位置编码的设计使得模型可以学习到相对位置关系,且能够处理比训练时更长的序列。
计算示例:
计算pos=0(第一个词)的位置编码:
position = 0
d_model = 512
pe = np.zeros(512)
for i in range(0, 512, 2):
denominator = np.power(10000, 2*i/d_model)
pe[i] = np.sin(position / denominator)
pe[i+1] = np.cos(position / (10000**(2*i/d_model)))
最终输入表示:
h1_0 = e1 + pe(pos=0) # shape (512,)
h2_0 = e2 + pe(pos=1) # shape (512,)
H_0 = np.stack([h1_0, h2_0]) # shape (2, 512)
编码器结构:多头注意力与前馈网络
Transformer编码器由N个相同层堆叠而成,每层包含两个子层:多头自注意力机制和位置全连接前馈网络。
多头自注意力机制(Multi-Head Self-Attention)
注意力基础计算
首先将输入通过线性变换得到查询(Q)、键(K)、值(V)向量:
其中参数矩阵维度为:
注意力分数计算(扩展阅读:来聊聊Q、K、V的计算-CSDN博客):
计算示例:
假设:
-
d_k = d_v = 64
-
h=8个头
-
当前输入H_0 shape (2,512)
初始化参数矩阵:
W_Q = np.random.randn(512, 64) * 0.1
W_K = np.random.randn(512, 64) * 0.1
W_V = np.random.randn(512, 64) * 0.1
计算Q,K,V:
Q = H_0 @ W_Q # shape (2,64)
K = H_0 @ W_K # shape (2,64)
V = H_0 @ W_V # shape (2,64)
计算注意力分数:
attn_scores = Q @ K.T / np.sqrt(64) # shape (2,2)
attn_weights = softmax(attn_scores) # 按行softmax
output = attn_weights @ V # shape (2,64)
多头注意力实现
多头注意力并行执行次不同的注意力计算:
其中参数矩阵:
通常设置,保持计算量不变。
计算示例:
假设8个头的输出:
head1 = np.random.randn(2,64) # 模拟第一个头输出
...
head8 = np.random.randn(2,64) # 模拟第八个头输出
multi_head = np.concatenate([head1,...,head8], axis=-1) # shape (2,512)
W_O = np.random.randn(512,512) * 0.1
output = multi_head @ W_O # shape (2,512)
残差连接与层归一化
每个子层后都应用残差连接和层归一化:
层归一化计算:
其中和
是均值和方差,
和
是可学习参数。
计算示例:
假设:
-
输入h shape (2,512)
-
子层输出sublayer_out shape (2,512)
残差连接:
residual = h + sublayer_out # shape (2,512)
层归一化计算:
mean = np.mean(residual, axis=-1, keepdims=True) # shape (2,1)
var = np.var(residual, axis=-1, keepdims=True) # shape (2,1)
gamma = np.ones(512) # 初始化为1
beta = np.zeros(512) # 初始化为0
h_out = gamma * (residual - mean) / np.sqrt(var + 1e-5) + beta
位置全连接前馈网络(Position-wise FFN)
前馈网络对每个位置独立应用相同的两层全连接:
其中参数维度:
通常,提供足够的表达能力。
计算示例:
参数设置:
d_ff = 2048
W1 = np.random.randn(512, 2048) * 0.1
b1 = np.zeros(2048)
W2 = np.random.randn(2048, 512) * 0.1
b2 = np.zeros(512)
计算过程:
x = np.random.randn(2,512) # 输入
hidden = np.maximum(0, x @ W1 + b1) # ReLU激活
output = hidden @ W2 + b2 # shape (2,512)
解码器结构:掩码自注意力与编码器-解码器注意力
解码器也由N个相同层堆叠,但包含三种子层:掩码自注意力、编码器-解码器注意力和前馈网络。
掩码自注意力(Masked Self-Attention)
为防止解码器看到未来信息,在自注意力计算中应用掩码:
计算时:
计算示例:
假设解码器输入3个词:
Q = np.random.randn(3,64)
K = np.random.randn(3,64)
attn_scores = Q @ K.T / np.sqrt(64) # shape (3,3)
应用掩码:
mask = np.triu(np.ones((3,3)), k=1) # 上三角矩阵
masked_scores = attn_scores - 1e9 * mask # 未来位置设为-∞
attn_weights = softmax(masked_scores) # 按行softmax
编码器-解码器注意力(Encoder-Decoder Attention)
此处的查询来自解码器前一层的输出,而键和值来自编码器的最终输出:
这使得解码器可以关注输入序列的相关部分。
输出层:线性变换与softmax
最终输出层将解码器输出转换为预测词的概率分布:
- 线性变换:将
维向量映射到词汇表大小
- Softmax归一化:
计算示例:
假设:
-
解码器最后输出 shape (3,512)
-
词汇表V=10000
W_out = np.random.randn(512, 10000) * 0.1
logits = decoder_output @ W_out # shape (3,10000)
probs = softmax(logits, axis=-1) # 得到每个词的概率分布
关键技术与优化细节
缩放点积注意力
缩放因子防止点积过大导致softmax梯度消失:
多头注意力的优势
多头机制允许模型:
-
在不同位置共同关注来自不同表示子空间的信息
-
学习多种依赖关系模式(如局部/全局、语法/语义)
残差连接的作用
残差连接:
-
缓解深层网络梯度消失问题
-
使模型能够学习恒等映射,保留原始信息
层归一化的位置
Transformer采用后归一化(Post-LN):
-
归一化在残差连接之后进行
-
相比前归一化(Pre-LN)训练更稳定,但需要更仔细的参数初始化
数学视角下的完整前向传播
给定输入序列,完整计算流程:
输入嵌入:
编码器每层计算:
解码器每层计算:
输出概率:
扩展讨论:Transformer的变体与改进
高效注意力机制
原始自注意力复杂度O(n²)限制了长序列处理,改进包括:
-
稀疏注意力(如Longformer)
-
局部窗口注意力(如Swin Transformer)(扩展阅读:从Transformer到Swin Transformer:视觉领域架构演进与技术突破分析-CSDN博客)
-
低秩近似(如Linformer)
位置表示的改进
-
相对位置编码(如Transformer-XL)
-
可学习的位置嵌入
-
旋转位置编码(RoPE)
模型架构演进
-
编码器-解码器(BERT/GPT)
-
仅解码器(GPT系列)
-
仅编码器(BERT)
结语
Transformer架构通过自注意力机制实现了强大的序列建模能力,其精心设计的各层组件协同工作,克服了传统RNN/CNN的局限性。理解每一层的数学细节对于模型调优和架构创新至关重要。随着研究的深入,Transformer仍在不断演进,但其核心思想将继续影响深度学习的发展方向。