Dijkstra
原始算法
- 对于全体点集,划分为两个集合,一个为达成最短路的集合,一个反之
- 每次松弛操作为
- 将当前离源点最近的点加入达成最短路的集合
- 根据新加入的点,维护未加入的点的最短距离
- 直至找到目标点加入
考虑和最小生成树Prime的相似之处
复杂度 O(V^2),不可以处理负权图
优化方式
对于稀疏图,算法V^2的复杂度是过高的
可以考虑在选择最近点的时候,选择用堆来优化
常见的实现是用优先队列实现
复杂度约为O(E*logE)
这类变态题目不多见,可以参考吉大模板:
#define typec int // type of cost
const typec inf = 0x3f3f3f3f; // max of cost
typec cost[E], dist[V];
int e, pnt[E], nxt[E], head[V], prev[V], vis[V];
struct qnode {
int v;typec c;
qnode(int vv = 0, typec cc = 0) :
v(vv), c(cc) {
}
bool operator <(const qnode& r) const {
return c > r.c;
}
};
void dijkstra(int n, const int src) {
qnode mv;
int i, j, k, pre;
priority_queue<qnode> que;
vis[src] = 1;
dist[src] = 0;
que.push(qnode(src, 0));
for (pre = src, i = 1; i < n; i++) {
for (j = head[pre]; j != -1; j = nxt[j]) {
k = pnt[j];
if (vis[k] == 0 && dist[pre] + cost[j] < dist[k]) {
dist[k] = dist[pre] + cost[j];
que.push(qnode(pnt[j], dist[k]));
prev[k] = pre;
}
}
while (!que.empty() && vis[que.top().v] == 1)
que.pop();
if (que.empty())
break;
mv = que.top();
que.pop();
vis[pre = mv.v] = 1;
}
}
inline void addedge(int u, int v, typec c) {
pnt[e] = v;
cost[e] = c;
nxt[e] = head[u];
head[u] = e++;
}
void init(int nv, int ne) {
int i, u, v;
typec c;
e = 0;
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
memset(prev, -1, sizeof(prev));
for (i = 0; i < nv; i++)
dist[i] = inf;
for (i = 0; i < ne; ++i) {
scanf("%d%d%d", &u, &v, &c); // %d: type of cost
addedge(u, v, c); // vertex: 0 ~ n-1, 单向边
}
}
Floyd
三重针对点的For循环,枚举没一个可以松弛的操作
松弛的操作是,对于媒介节点k,尝试能否存在 i->j 的距离 换成 i->k->j
注意不要写反了顺序,媒介节点一定是最外层循环
复杂度:O(V^3),这个算法变形应用较多,比如求两点之间的通路中,最短的最长路径之类的。主要是对松弛操作的理解。
SPFA
- 将源点入队
- 队列不空时循环:
- 从队列中取出一个点
- 对于该点所有邻接定点,如果通过取出点中转后距离更短
- 更新最短距离
- 如果该点不再队列中,入队
- 结束
SPFA是Bellman-Ford的其中一种实现,一般都不用前者,而用SPFA。O(kE),除了个别最坏的情况外,是个很好的算法。
typedef struct{
int from,to,dis;
}E;
int N,M,X;
vector< vector<E> > map,map2;//map2是map的逆
queue<int> que;
vector<bool> inQue;
vector<int> dis,dis2;//dis2记录逆图的最短路
/*X为源点*/
map.clear();
while(!que.empty())que.pop();
inQue.clear();
dis.clear();
map.resize(N+1);
inQue.resize(N+1,false);
dis.resize(N+1,INF);
map2.resize(N+1);//初始化map2
for(i=0;i<M;i++){
scanf("%d%d%d",&e.from,&e.to,&e.dis);
map[e.from].push_back(e);
}
que.push(X);
inQue[X]=true;
dis[X]=0;
while(!que.empty()){
w=que.front();
que.pop();
inQue[w]=false;
for(i=0;i<map[w].size();i++){
if(dis[map[w][i].to]>dis[w]+map[w][i].dis){
dis[map[w][i].to]=dis[w]+map[w][i].dis;
if(!inQue[map[w][i].to]){
que.push(map[w][i].to);
inQue[map[w][i].to]=true;
}
}
}
}
负环的判断
- SPFA中,重复入队V次。(松弛超过V次)
- Flod中,发现f[i][i]<0 *
题目
POJ 1860 Currency Exchange
Currency Exchange 给定汇率,查找能否存在白挣钱的方案,将最短路稍改,变成最长路,判断算法是否找到正环,即可。
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
struct E{
int from,to;
double r,c;
E(int _from,int _to,double _r,double _c){
from=_from;
to=_to;
r=_r;
c=_c;
};
};
int n,m,s;
double v;
vector< vector<E> > map;
queue<int> que;
vector<bool> inQue;
vector<double> dis;
vector<int> rank;
int main(){
int i,a,b;
double r_ab,c_ab,r_ba,c_ba;
bool fg;
while(~scanf("%d%d%d%lf",&n,&m,&s,&v)){
fg=false;
map.clear();
dis.clear();
inQue.clear();
rank.clear();
while(!que.empty())que.pop();
map.resize(n+1);
dis.resize(n+1,0);
inQue.resize(n+1,false);
rank.resize(n+1,0);
for(i=0;i<m;i++){
scanf("%d%d%lf%lf%lf%lf",&a,&b,&r_ab,&c_ab,&r_ba,&c_ba);
map[a].push_back(E(a,b,r_ab,c_ab));
map[b].push_back(E(b,a,r_ba,c_ba));
}
que.push(s);
inQue[s]=true;
dis[s]=v;
rank[s]=1;
while(!que.empty()){
a=que.front();
que.pop();
inQue[a]=false;
for(i=0;i<map[a].size();i++){
if(dis[map[a][i].to]<(dis[a]-map[a][i].c)*map[a][i].r){
// printf("%d -> %dn",a,map[a][i].to);
dis[map[a][i].to]=(dis[a]-map[a][i].c)*map[a][i].r;
if(!inQue[map[a][i].to]){
rank[map[a][i].to]++;
if(rank[map[a][i].to]>=n){
fg=true;
break;
}
que.push(map[a][i].to);
inQue[map[a][i].to]=true;
}
}
}
if(fg){
break;
}
}
if(fg){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}
POJ 3259 Wormholes
Wormholes 这个直接判断负环……赤裸裸地。
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
struct E{
int from,to,d;
E(int _from,int _to,int _d){
from=_from;
to=_to;
d=_d;
};
};
int n,m,s;
vector< vector<E> > map;
queue<int> que;
vector<bool> inQue;
vector<int> dis;
vector<int> rank;
int main(){
int f,n,m,w;
int i,j,s,e,t;
bool fg;
scanf("%d",&f);
while(f--){
scanf("%d%d%d",&n,&m,&w);
fg=false;
map.clear();
dis.clear();
inQue.clear();
rank.clear();
while(!que.empty())que.pop();
map.resize(n+1);
dis.resize(n+1,99999999);
inQue.resize(n+1,false);
rank.resize(n+1,0);
for(i=0;i<m;i++){
scanf("%d%d%d",&s,&e,&t);
map[s].push_back(E(s,e,t));
map[e].push_back(E(e,s,t));
}
for(i=0;i<w;i++){
scanf("%d%d%d",&s,&e,&t);
map[s].push_back(E(s,e,-t));
}
que.push(1);
inQue[1]=true;
dis[1]=0;
rank[1]=1;
while(!que.empty()){
s=que.front();
que.pop();
inQue[s]=false;
for(i=0;i<map[s].size();i++){
if(dis[map[s][i].to]>dis[s]+map[s][i].d){
// printf("%d -> %dn",a,map[a][i].to);
dis[map[s][i].to]=dis[s]+map[s][i].d;
if(!inQue[map[s][i].to]){
rank[map[s][i].to]++;
if(rank[map[s][i].to]>=n){//一个点入队的次数>=n的话,那就是存在负环了。
fg=true;
break;
}
que.push(map[s][i].to);
inQue[map[s][i].to]=true;
}
}
}
if(fg){
break;
}
}
if(fg){
puts("YES");
}else{
puts("NO");
}
}
return 0;
}
POJ 1062 昂贵的聘礼
这个本身是个最短路径的问题,不过有些变化。最短路径,有个限制,就是节点有等级差异,在某个路径下,有些节点不可达。
为了解决这个问题,可以枚举等级差异做。
例如酋长是x,限制为n。则枚举:
x-n~x
x-n+1~x+1
#include <cstdio>
#include <vector>
#include <queue>
using namespace std;
struct E{
int to,d;
E(int _to,int _d){
to=_to;
d=_d;
};
};
int n,m;
vector< vector <E> > map;
queue<int> que;
vector<bool> inQue;
vector<int> dis;
vector<int> lv;
int abs(int x){
return x>0?x:-x;
}
int main(){
int i,j,p,l,x,t,v;
int ans;
while(~scanf("%d%d",&m,&n)){
map.clear();
while(!que.empty())que.pop();
lv.clear();
map.resize(n+1);
lv.resize(n+1);
for(i=0;i<n;i++){
scanf("%d%d%d",&p,&l,&x);
lv[i+1]=l;
map[i+1].push_back(E(0,p));
for(j=0;j<x;j++){
scanf("%d%d",&t,&v);
map[i+1].push_back(E(t,v));
}
}
lv[0]=lv[1];
ans=99999999;
for(j=0;j<=m;j++){
inQue.clear();
inQue.resize(n+1,false);
inQue[1]=true;
dis.clear();
dis.resize(n+1,99999999);
dis[1]=0;
que.push(1);
while(!que.empty()){
x=que.front();
que.pop();
inQue[x]=false;
for(i=0;i<map[x].size();i++){
if(lv[map[x][i].to]>lv[1]+j)continue;
if(lv[map[x][i].to]<lv[1]+j-m)continue;
if(dis[map[x][i].to]>dis[x]+map[x][i].d){
dis[map[x][i].to]=dis[x]+map[x][i].d;
if(!inQue[map[x][i].to]){
inQue[map[x][i].to]=true;
que.push(map[x][i].to);
}
}
}
}
// printf("%d ~ %d %dn",lv[1]+j-m,lv[1]+j,dis[0]);
if(ans>dis[0])ans=dis[0];
}
printf("%dn",ans);
}
return 0;
}
POJ 2253 Frogger
可以用Flod做,不过方程少变化一下:
f(i,j)=min( f(i,j), max(f(i,k),f(k,j)) )
解释:
如果需要经过第三中转的话,最小最大的跳跃是中转路径中的较大者,否则跳不过去。
如果直接跳都比中转跳短的话,何必要跳,那样不是最小的最大跳了。
#include <cstdio>
#include <cmath>
#include <cstring>
#define N 205
const double esp=1e-5;
double d[N][N];
int x[N],y[N],n;
double min(double x,double y){
return x<y?x:y;
}
double max(double x,double y){
return x>y?x:y;
}
int main(){
int i,j,k,t,cs=1;
while(scanf("%d",&n),n){
for(i=0;i<n;i++){
d[i][i]=0;
scanf("%d%d",&x[i],&y[i]);
for(j=0;j<i;j++){
d[i][j]=d[j][i]=sqrt(
(x[i]-x[j])*(x[i]-x[j])
+ (y[i]-y[j])*(y[i]-y[j])
);
}
}
for(k=0;k<n;k++){
for(i=0;i<n;i++){
if(i==k)continue;
for(j=0;j<n;j++){
if(i==j||k==j)continue;
d[i][j]=
min(
d[i][j],
max(
d[i][k],
d[k][j]
)
);
}
}
}
printf("Scenario #%dnFrog Distance = %.3fnn",cs++,d[1][0]);
}
}
请思考,一定要最短路做吗?当然不是,二分枚举的效率还稍高一些:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <queue>
using namespace std;
#define N 205
const double esp=1e-5;
double d[N][N];
int x[N],y[N],n;
bool s[N];
queue<int> que;
int main(){
int i,j,t,cs=1;
double l,r,m;
while(scanf("%d",&n),n){
for(i=0;i<n;i++){
d[i][i]=0;
scanf("%d%d",&x[i],&y[i]);
for(j=0;j<i;j++){
d[i][j]=d[j][i]=sqrt(
(x[i]-x[j])*(x[i]-x[j])
+ (y[i]-y[j])*(y[i]-y[j])
);
}
}
l=0;
r=d[0][1];
while(r-l>esp){
m=(r+l)/2;
memset(s,0,sizeof(bool)*(n+1));
s[0]=true;
while(!que.empty())que.pop();
que.push(0);
while(!que.empty()){
t=que.front();
que.pop();
for(i=0;i<n;i++){
if(s[i])continue;
if(d[t][i]>m)continue;
s[i]=true;
if(i==1)break;
que.push(i);
}
if(s[1])break;
}
if(s[1]){
r=m;
}else{
l=m;
}
}
printf("Scenario #%dnFrog Distance = %.3fnn",cs++,m);
}
}
POJ 1125 Stockbroker Grapevine
股票,找到一个人作为源点,使到通过这个源点到达所有人的,且最远的那个人的距离最短。
Flod后,检查矩阵找到那个人即可。O(V^3+V^2)。
#include <cstdio>
#include <cstring>
#define N 105
int d[N][N],n;
int main(){
int i,j,k,t;
int inf,ans,ans_i,tmp;
while(scanf("%d",&n),n){
memset(d,63,sizeof(d));
inf=d[0][0];
for(i=0;i<n;i++){
scanf("%d",&j);
while(j--){
scanf("%d%d",&k,&t);
d[i][k-1]=t;
}
}
for(k=0;k<n;k++){
for(i=0;i<n;i++){
if(i==k)continue;
for(j=0;j<n;j++){
if(i==j)continue;
if(j==k)continue;
if(d[i][j]>d[i][k]+d[k][j])
d[i][j]=d[i][k]+d[k][j];
}
}
}
ans=inf;
for(i=0;i<n;i++){
tmp=-1;
for(j=0;j<n;j++){
if(i==j)continue;
if(d[i][j]==inf){
tmp=-1;
break;
}
if(d[i][j]>tmp)
tmp=d[i][j];
}
if(tmp!=-1){
if(ans>tmp){
ans=tmp;
ans_i=i+1;
}
}
}
if(ans==inf){
printf("disjointn");
}else{
printf("%d %dn",ans_i,ans);
}
}
return 0;
}
POJ 2240 Arbitrage
Flod,后检查自己到自己的距离是不是大于1。
注意,这个时候,就不要判断i,j,k相等就不干的情况了!
#include <cstdio>
#include <cstring>
#include <string>
#include <map>
using namespace std;
int n;
double t[40][40];
map<string,int> v;
int main(){
int i,j,k,m;
bool fg;
char a[60],b[60],money[60];
double p;
int cs=1;
while(scanf("%d",&n),n){
fg=false;
v.clear();
for(i=0;i<n;i++){
scanf("%s",money);
v[money]=i;
}
memset(t,0,sizeof(t));
for(i=0;i<n;i++)
t[i][i]=1;
scanf("%d",&m);
while(m--){
scanf("%s%lf%s",a,&p,b);
t[v[a]][v[b]]=p;
}
for(k=0;k<n;k++){
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(t[i][j]<t[i][k]*t[k][j]){
t[i][j]=t[i][k]*t[k][j];
}
}
}
}
for(i=0;i<n;i++){
if(t[i][i]>1){
fg=true;
break;
}
}
if(fg){
printf("Case %d: Yesn",cs++);
}else{
printf("Case %d: Non",cs++);
}
}
return 0;
}
水题报告结束。[via]