Jetson
文章平均质量分 81
AI小笔记
人一能之,己百之;人十能之,己千之。
展开
-
NanoTrack原理与转tensorrt推理
NanoTrack 是一种轻量级且高效的目标跟踪算法,基于Siamese网络架构,旨在在资源受限的设备(如无人机、嵌入式系统等)上实现实时且精确的目标跟踪。随着计算机视觉领域的快速发展,传统的目标跟踪算法(如KCF等)逐渐暴露出在复杂场景中的局限性,特别是在处理目标的尺度变化、遮挡和背景复杂时,性能难以保证。本文档将详细介绍 NanoTrack 的模型结构以帮助读者更好地理解并应用该算法,同时对比pt、onnx、tensorrt进行推理的耗时情况。原创 2024-10-24 08:52:57 · 1921 阅读 · 1 评论 -
Jetson安装Python3.8 tensorrt库
Jetson安装Python3.8 tensorrt库,需要确保正确Python与TensorRT版本,你的编译环境与目标平台(ARM架构)一致,避免使用不兼容的x86_64编译配置。后续使用python调用tensorrt与cuda进行推理速度还是很快的,能够达到50帧,这在板端也是很炸裂的存在!!!如果阅读本文对你有用,欢迎一键三连呀!!!2024年8月9日12:23:36。原创 2024-08-09 12:25:23 · 1762 阅读 · 9 评论 -
ubuntu使用shell脚本实现开机自启python程序
本文以ubuntu18.04为例,记录ubuntu使用shell脚本实现开机自启python程序文章目录前言一、编写shell脚本auto_run.sh二、修改auto_run.sh权限三、添加开启自启程序打开gnome-session-properties添加开启自启脚本总结前言项目程序完成后大多情况是需要实现开机自启的,因为让非专业人员在ubuntu系统中通过敲命令行来启动程序是不太现实的,也会影响用户体验。我们希望用户通过重启能解决99%的问题。一、编写shell脚本auto_run.sh原创 2021-11-16 14:00:54 · 5767 阅读 · 4 评论 -
yolov5模型部署:Triton服务器+TensorRT模型加速(基于Jetson平台)
系列文章目录yolov5 win10 CPU与GPU环境搭建,亲测有效!yolov5训练自己的数据集,详细教程!yolov5转tensorrt模型Jetson调用triton inference server详细笔记Jetson下Triton部署yolov5的trt目标检测系统文章目录系列文章目录前言一、建立triton模型库1.1config文件编写1.2文件配置二、启动triton服务三、启动客户端测试图片测试视频总结前言在完成yolov5环境搭建,训练自己的模型,以及将yolov原创 2021-08-24 15:55:28 · 7331 阅读 · 45 评论 -
Jetson(ubuntu)下切换python版本方法
Jetson系列盒子经过刷机之后,python版本默认是python2.7,若想要切换到python3版本,需要执行如下命令,把两个版本的python加入到alternatives列表中:sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150如果原创 2021-08-13 09:43:46 · 3036 阅读 · 0 评论 -
Jetson调用triton inference server详细笔记
文章目录一、jetson安装triton-inference-server1.1 jtop命名行查看jetpack版本与其他信息1.2下载对应版本的安装包1.3解压刚刚下载的安装包,并进入到对应的bin目录下1.4尝试运行一下tritonserver二、运行triton-inference-server2.1下载相关文件包2.2 生成模型文件2.3启动tritonserver三、测试triton client demo3.1安装客户端依赖项3.2安装python 客户端库3.3运行onnx分类模型demo总原创 2021-08-12 20:30:09 · 4347 阅读 · 10 评论
分享