二叉树

1.每个节点最多只能有两个子节点的一种形式称为二叉树

2.如果二叉树的所有叶子节点都在最后一层,并且节点总数=2^n-1,n为层数,则我们称为满二叉树

3.如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树

 

 

二叉树的遍历:

前序遍历:先输出父节点,再遍历左子树和右子树

中序遍历:先遍历左子树,再输出父节点,再遍历右子树

后序遍历:先遍历左子树,再遍历右子树,最后输出父节点

 

前序遍历的思路分析:

  1. 先输出当前节点(初始的时候是root节点)
  2. 如果左子节点不为空,则递归继续前序遍历
  3. 如果右子节点不为空,则递归继续前序遍历

中序遍历思路分析:

  1. 如果当前节点的左子节点不为空,则递归继续中序遍历
  2. 输出当前节点
  3. 如果当前节点的右子节点不为空,则递归继续中序遍历

后序遍历思路分析:

  1. 如果当前节点的左子节点不为空,则递归继续后序遍历
  2. 如果当前节点的右子节点不为空,则递归继续后序遍历
  3. 输出当前节点

不管是前序、后序还是中序遍历,都要从根节点开始遍历。

代码实现如下:

package com.atguigu.tree;

public class BinaryTreeDemo {

	public static void main(String[] args) {
		//先创建一颗二叉树(先手动创建)
		BinaryTree binaryTree=new BinaryTree();
		
		//创建需要的节点
		HeroNode root=new HeroNode(1, "宋江");
		HeroNode node2=new HeroNode(2, "吴用");
		HeroNode node3=new HeroNode(3, "卢俊义");
		HeroNode node4=new HeroNode(4, "林冲");
		
		root.setLeft(node2);
		root.setRight(node3);
		node3.setRight(node4);
		binaryTree.setRoot(root);//设根节点
		
		//测试
		System.out.println("前序遍历");
		binaryTree.preOrder();
		
		System.out.println("中序遍历");
		binaryTree.infixOrder();
		
		System.out.println("后续遍历");
		binaryTree.postOrder();
	}

}

//定义BinaryTree二叉树
class BinaryTree{
	private HeroNode root;

	public void setRoot(HeroNode root) {
		this.root = root;
	}
	
	//前序遍历
	public void preOrder() {
		if(this.root!=null) {
			this.root.preOrder();
		}
		else {
			System.out.println("当前二叉树为空,无法遍历");
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.root!=null) {
			this.root.infixOrder();
		}
		else {
			System.out.println("当前二叉树为空,无法遍历");
		}
	}
	
	//后序遍历
	public void postOrder() {
		if(this.root!=null) {
			this.root.postOrder();
		}
		else {
			System.out.println("当前二叉树为空,无法遍历");
		}
	}
}

//先创建节点(HeroNode节点)
class HeroNode{
	private int no;
	private String name;
	private HeroNode left;//默认null
	private HeroNode right;//默认null
	public HeroNode(int no, String name) {
		super();
		this.no = no;
		this.name = name;
	}
	public int getNo() {
		return no;
	}
	public void setNo(int no) {
		this.no = no;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public HeroNode getLeft() {
		return left;
	}
	public void setLeft(HeroNode left) {
		this.left = left;
	}
	public HeroNode getRight() {
		return right;
	}
	public void setRight(HeroNode right) {
		this.right = right;
	}
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + "]";
	}
	
	//编写前序遍历的方法
	public void preOrder() {
		System.out.println(this);//先输出当前节点(即父节点)
		//递归向左子树前序遍历
		if(this.left!=null) {
			this.left.preOrder();
		}
		//递归向右子树前序遍历
		if(this.right!=null) {
			this.right.preOrder();
		}
	}
	
	//编写中序遍历的方法
	public void infixOrder() {
		//递归向左子树中序遍历
		if(this.left!=null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		//递归向右子树中序遍历
		if(this.right!=null) {
			this.right.infixOrder();
		}
	}
	
	//编写后序遍历的方法
	public void postOrder() {
		//递归向左子树后序遍历
		if(this.left!=null) {
			this.left.postOrder();
		}
		//递归向右子树后序遍历
		if(this.right!=null) {
			this.right.postOrder();
		}
		System.out.println(this);
	}
}

 

发布了151 篇原创文章 · 获赞 13 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览