junli_chen的博客

有总结才有进步!

排序:
默认
按更新时间
按访问量

遗传算法入门到掌握

博主前言:此文章来自一份网络资料,原作者不明,是我看过的最好的一份遗传算法教程,如果你能耐心看完他,相信你一定能基本掌握遗传算法。 遗传算法的有趣应用很多,诸如寻路问题,8数码问题,囚犯困境,动作控制,找圆心问题(这是一个国外网友的建议:在一个不规则的多边形 中,寻找一个包含在该多边形内的最...

2016-03-11 17:53:48

阅读数:389

评论数:2

遗传算法(Genetic Algorithm)

遗传算法(Genetic Algorithm)又叫基因进化算法,或进化算法。属于启发式搜索算法一种,这个算法比较有趣,并且弄明白后很简单,写个100-200行代码就可以实现。在某些场合下简单有效。本文就花一些篇幅,尽量白话方式讲解一下。         首先说一下问题。在我们学校数据结构这门功...

2016-03-10 20:53:15

阅读数:540

评论数:0

遗传算法中的转盘算法

转盘算法是遗传算法中的,相当于一个selector,对不同概率的结果选择的程度不同,倾向于选择大概率时间。 工作过程: 设想群体全部个体的适当性分数由一张饼图来代表 (见图)。 群体中每一染色体指定饼图中一个小块。块的大小与染色体的适应性分数成比例,适应性分数...

2016-03-10 20:52:03

阅读数:1358

评论数:0

python实现的遗传算法实例(一)

一、遗传算法介绍         遗传算法是通过模拟大自然中生物进化的历程,来解决问题的。大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的。把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的。当然,只能说有最优解的概率很大。这里,我们...

2016-01-28 14:52:06

阅读数:3553

评论数:3

贝叶斯网的R实现( Bayesian networks in R)bnlearn(4)

贝叶斯网络的推理(inference) (1)推理问题 在了解如何构造贝叶斯网络之后,下面我们考虑如何利用贝叶斯网络来进行推理。贝叶斯网络的推理是对某些变量当给定其它变量的状态作为证据时如何推断它们的状态,也就是通过计算回答查询(query)的过程。这个推理的过程也称为概率推理或信念更新。 ...

2016-01-09 21:23:53

阅读数:1680

评论数:1

贝叶斯网的R实现( Bayesian networks in R)bnlearn(3)

4.参数学习 得到贝叶斯网的网络结构之后,可以对局部分布的参数进行参数估计了,这称作参数学习。 4.1参数学习的基本方法 bnlearn包的参数学习函数是bn.fit,其参数method给出了两种具体的方法:“mle”为极大似然估计;"bayes"为贝叶斯后验...

2016-01-09 21:22:25

阅读数:1348

评论数:0

贝叶斯网的R实现( Bayesian networks in R)bnlearn(2)

3.结构学习 上面我们采用一个预先设定的结构建立了一个关于marks的贝叶斯网。这种方式在某些情况下(比如存在先验的专家知识)是合适的。但是对大多数的贝叶斯网络,我们需要从数据中学习网络。 3.1贝叶斯网的结构简介  贝叶斯网关于节点(随机变量)的条件依赖或条件独立可以从图的角度讨论...

2016-01-09 21:12:21

阅读数:421

评论数:0

贝叶斯网的R实现( Bayesian networks in R)bnlearn(1)

1.bayesian networks的一些基本概念  贝叶斯网bayesian networks是一种有向无环图模型(DAG),可表示为G=(V,A)。其中V是节点的集合,节点表示随机变量;A是弧(或称为边)的集合,弧的箭头表示随机变量之间的概率相依性。有向无环图DAG定义了一个因子化的V...

2016-01-09 21:10:19

阅读数:1036

评论数:0

《数学之美》马尔科夫链的扩展-贝叶斯网络

1.使用贝叶斯网络需要首先确定此网络的拓扑结构,并且还要知道各个状态之间相关的概率,即拓扑结构和这些参数的过程称为结构训练和参数训练。 2.结构训练:优化的贝叶斯网络结构要保证它产生的序列从头到尾的可能性最大,即后验概率最大。  当然,产生一个序列可以有多条路径,从理论上讲,需要完备的搜索,...

2016-01-09 20:36:27

阅读数:1173

评论数:0

贝叶斯信念网络和马尔科夫链有什么区别

可以讲,马尔可夫链是贝叶斯网络的特例,而贝叶斯网络是马尔可夫链的推广。  马尔可夫链 (MarkovChain),它描述了一种状态序列,其每个状态值取决于前面有限个状态。这种模型,对很多实际问题来讲是一种很粗略的简化。 在现实生活中,很多事物相互的关系并不能用一条链来串起来。它们之间的关系可能...

2016-01-09 20:26:50

阅读数:3796

评论数:0

【转】贝叶斯网络+马尔科夫毯 简介

原文地址:http://blog.csdn.net/memory513773348/article/details/16973807 简介 贝叶斯网络(Bayesian network),又称信念网络(belief network)或是有向无环图模型(directed acycli...

2016-01-09 20:13:25

阅读数:2593

评论数:0

马尔可夫链的扩展 贝叶斯网络 (Bayesian Networks)

我们在前面的系列中多次提到马尔可夫链 (Markov Chain),它描述了一种状态序列,其每个状态值取决于前面有限个状态。这种模型,对很多实际问题来讲是一种很粗略的简化。在现实生活中,很多事物相互的关系并不能用一条链来串起来。它们之间的关系可能是交叉的、错综复杂的。比如在下图中可以看到,心...

2016-01-05 19:50:22

阅读数:666

评论数:0

贝叶斯网络模型具体作用

叶斯网络模型最简单的例子是“分类器”,即在观测节点输入多个特征,就能获得这些特征所对应的具体事物。 例如:一个箱子里装有篮球,排球和足球,你的朋友每次从箱子里取出某一个球。但你看不见所取球的类型,只能通过朋友描述尺寸,外表,颜色等特征(观测数据)来辨别(分类),当然你之所以具备辨别(分...

2016-01-05 16:59:35

阅读数:1105

评论数:0

分类算法之贝叶斯网络(Bayesian networks)

1.1、摘要       在上一篇文章中我们讨论了朴素贝叶斯分类。朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强...

2016-01-05 14:57:55

阅读数:523

评论数:0

Bayesian Net Example

Bayesian Net Example Consider the following Bayesian network: Thus, the independence expressed in this Bayesian net are that  A and B are (absol...

2016-01-05 14:29:35

阅读数:212

评论数:0

不可小视的贝叶斯(三)

前面我们已经知道朴素贝叶斯分类器基于一个很强的假定,即对于给定的某个类别,各特征属性之间是相互独立的。这个假定简化了计算过程和减少了分类器的复杂度,但是其限制条件却太过苛刻。因为直观上我们知道,现实世界中各特征属性之间很有可能是相互关联的,我们不能忽略这个特征。为了对现实世界进行更好的建模以得到更...

2016-01-05 11:31:25

阅读数:599

评论数:0

不可小视的贝叶斯(二)

上次介绍了贝叶斯理论的基本知识,接下来介绍剩下的两部分内容,即:贝叶斯分类器和贝叶斯网络。对于这两部分的内容,涉及太多东西,这里讲述的只是一些基础知识,尽可能将我知道的分享给大家,有错误的地方还希望指正。     3)贝叶斯分类器     关于该部分内容,主要分为两个部分,即贝叶斯最优...

2016-01-05 11:30:43

阅读数:241

评论数:0

不可小视的贝叶斯(一)

昨天讲述了研究生做的第一个项目,今天开始进入我的学术研究方向的重点——机器学习,虽然这些文章对于我找一份程序员工作可能没有什么太大的帮助,但是毕竟是之前我花了很多时间研究过的,既然以后的重点都是回忆,那就索性一个不落下吧。另外之所以开始这样的行为,也得益于之前华为的一位技术面试官对我的影响,再次感...

2016-01-05 10:25:34

阅读数:166

评论数:0

贝叶斯网络的应用实例一

以下内容摘录自www.norsys.com,根据实例内容意译译文。 贝叶斯网络应用实例一:胸部疾病诊所(Chest Clinic) 假想你是Los Angeles一名新毕业的医生,专攻肺部疾病。你决定建立一个胸部疾病诊所,主治肺病及相关疾病。大学课本已经中告诉你了肺癌、肺结核和支气管炎...

2015-12-21 11:46:42

阅读数:5015

评论数:0

余弦定理的应用:基于文字的文本相似度计算

最近由于工作项目,需要判断两个txt文本是否相似,于是开始在网上找资料研究,因为在程序中会把文本转换成String再做比较,所以最开始找到了这篇关于 距离编辑算法 Blog写的非常好,受益匪浅。        于是我决定把它用到项目中,来判断两个文本的相似度。但后来实际操作发现有一些问题:直...

2015-12-14 20:24:46

阅读数:441

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭