判断三角形


1、若有a=b或(a-b)(b-c)(c-a)=0,
则△ABC为等腰三角形。
2、若有(a-b)2+(b-c)2+(c-a)2=0,
则△ABC为等边三角形。
3、若有a2+b2>c2,则△ABC为锐角三角形;
若有a2+b2=c2,则△ABC为直角三角形;
若有a2+b2<c2,则△ABC为钝角三角形。
4、若有(a2-b2)( a2+b2-c2)=0,
则△ABC为等腰三角形或直角三角形。
5、若有a=b且 a2+b2=c2,
则△ABC为等腰直角三角形。
以上是从三角形的边与边之间的关系考虑的。
6、若有sin2A+sin2B=sin2C或sinA=sinB,
则△ABC为直角三角形或等腰三角形。
7、若有cosA>0,或tanA>0,(其中∠A为△ABC中的最大角) 则△ABC为锐角三角形。
8、若有cosA<0,或tanA<0,(其中∠A为△ABC中的最大角), 则△ABC为钝角三角形。
9、若有两个(或三个)同名三角函数值相等(如tanA=tanB),则△ABC为等腰三角形(或等边三角形)。
10、若有特殊的三角函数值,则按特殊角来判断,如cosA=,b=c,则△ABC为等边三角形。
以下就一些具体实例进行分析解答:
一、利用方程根的性质:
例1:若方程x2+2ax+b2=0与x2+2cx-b2=0有一个相同的根,且a、b、c为一个三角形的三条边,则此三角形为(   )
(A)      锐角三角形;(B)钝角三角形;
(C)以c为斜边的直角三角形;(D)以a为斜边的直角三角形;
(“缙云杯”初中数学邀请赛)
解:将两个方程相减,得:2ax-2cx+2b2=0,显然
a≠c,否则b=0,与题设矛盾,故x= ,将两个方程相加,得2ax+2cx+2b2=0,∵x≠0,否则b=0,与题设矛盾,∴x=-(a+c),∵两个

方程有一个相同的根,
∴  =-(a+c),即b2+c2=a2,故△ABC是以a为斜边的直角三角形,故应选(D)
二、利用根的判别式
例2:已知a、b、c是△ABC的三边,且方程b(x2-1)-2ax+c(x2+1)=0没有实数根,试判断△ABC的形状。
解:整理原方程,得:(c+b)x2-2ax+(c-b)=0,由已知,得:△=4a2-4(c+b)(c-b)=4(a2+b2-c2)<0 ,
∴a2+b2-c2<0,即 a2+b2<c2,故△ABC是钝角三角形。
三、利用根与系数的关系
例3、在△ABC中,a、b、c分别为∠A、∠B、
∠C的对边,已知方程x2+axcosB-bcosA=0的两根之和等于两根之积,试判断△ABC的形状。
解:根据一元二次方程的根与系数的关系,得:acosB=bcosA,如图:作CD⊥AB于D,则AD=bcosA,BD=acosB,AD=BD,又CD⊥AB,∴

△ABC为等腰三角形。
四、利用非负数的性质
例4:已知a、b、c是△ABC的三边,且a3+b3+c3=3abc,求证:△ABC是等边三角形。
证明:∵a3+b3+c3=3abc,
∴(a+b)3+c3-3a2b-3ab2-3abc=0,
即(a+b+c)(a2+b2+c2-ab-bc-ac)=0,∵a+b+c≠0,
∴a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0
即(a-b)2+(b-c)2+(c-a)2=0,∴a-b=b-c=c-a=0,故a=b=c,∴△ABC是等边三角形。
五、利用三角形的面积
例5:设△ABC的三条高线之和等于此三角形三个角平分线的交点到一边的距离的9倍,则△ABC是等边三角形。
证明:设△ABC的面积为S,三个内角平分线交点为0,到一边的距离为h,三边上的高分别为ha、hb、hc,由三角形面积公式,得:

ha=,hb=,hc=,h=,由已知,ha+hb+hc=9h,
∴,即,
∴c(a-b)2+a(b-c)2+b(c-a)2=0,
又a、b、c均为正数,
∴(a-b)2+(b-c)2+(c-a)2=0,
∴a=b=c,故△ABC是等边三角形。
例6、设P、Q为线段BC上的两定点,且BP=CQ,A为BC外的一个动点,当A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的

结论。
(全国初中数学邀请赛)
答:△ABC为锐角三角形或钝角三角形。很显然,∵BP=CQ,∠BAP=∠CAQ,∴△ABP与△ACQ的外接圆是两个等圆,过点A作BC的垂线

AD,垂足为D,∵点P、Q为线段BC上的两定点,∴P、Q两点不可能与点D重合,否则两点均与点D重合,与题设矛盾。∴△ABP与△ACQ

的外接圆01与02必相交,故△ABC不可能为直角三角形,∴△ABC为锐角三角形或钝角三角形。
六、利用几何知识
例7:△ABC的三条外角平分线相交成一个
△PQR,则△PQR(    )
(A) 一定是直角三角形;(B)一定是锐角三角形;(C)一定是钝角三角形;(D)以上结论都不对。
解:可以证明△PQR的任意一个内角小于90O ,如可证明∠R<90O,只需证明∠α+∠β>90O,
因为2∠α=∠2+∠3,2∠β=∠1+∠2,
2∠α+2∠β=∠1+2∠2+∠3>1800,
所以∠α+∠β>900,故∠R<900,也就是说,∠R、∠P、∠Q均为锐角,所以△PQR为锐角三角形。应选(C)
七、利用三角函数
例8:在△ABC中,已知:sinA×tanB<0,那么这个三角形是(   )
(A)直角三角形;(B)锐角三角形;(C)钝角三角形;(D)以上结论都不对。
解:因为sinA×tanB<0,所以sinA和tanB异号,
又00<A<1800,00<B<1800,所以sinA>0,tanB<0,
所以∠B为钝角,故△ABC为钝角三角形。应选(C)
八、利用余弦定理
例9:已知一个三角形的三边为4、5、6,试判断此三角形的形状。
解:设最长边6所对的角为∠A,由余弦定理,得:cosA=,所以∠A<900,由于∠A为最大角,故此三角形为锐角三角形。
九、利用正弦、余弦定理
例10:△ABC中,,试判断该三角形的形状。
解:由已知,得:sinAcosA=sinBcosB(1),
由正弦、余弦定理,得:sinA=,sinB=,(这里,r为△ABC的外接圆半径), cosB=,分别代入(1),得:a2b2+a2c2-

a4=a2b2+b2c2-b4即(a2-b2)(c2-a2-b2)=0,
所以a2=b2,或c2=a2+b2所以a=b或a2+b2=c2
故△ABC为等腰三角形或直角三角形。
十、利用二次函数性质
例11:设二次函数y=(a+b)x2+2cx-(a-b),当时,函数有最小值时,若a、b、c为△ABC的三边的长,试判断△ABC的形状。
解:因为a、b、c为△ABC的三边的长,所以a>0,
b>0,c>0,a+b>0,由题意知:  ,
即2c=a+b, ,因为2c=a+b,a=b,故a=b=c,所以△ABC是等边三角形。
例12:已知a、b、c是锐角△ABC的三条边,且 LgsinA-LgsinC=Lg,求证:△ABC是等边三角形。
证明:由 ,得由LgsinA-LgsinC=Lg ,得由正弦定理,得所以所以b=c;因为所以c2=ab,可得因为∠C为锐角,所以∠C=600,由余弦定理,

得c2=a2+b2-2abcosC=a2+b2-ab,故(a-b)2=0,所以a=b,故△ABC为等边三角形。
例13:设∠A、∠B、∠C是△ABC的三个内角,∠C是锐角,若关于x的方程x2-(2sin∠C)x+sin A sin B=0有两个相等的实根,且

4sin2∠C+4cos∠C-5=0,求证:△ABC为等边三角形。
证明:因为方程x2-(2sin∠C)x+sin A sin B=0有两个相等的实根,所以△=(2sinC)2-4sinAsinB=0,根据正弦定理,得:c2-

ab=0,所以c2=ab,由4sin2C+4cosC-5=0,
得:4(1-cos2C)+4cosC-5=0, 即:4cos2C-4cosC+1=0,
所以:(2cosC-1)2=0,所以:cosC=又因为∠C为锐角,
所以:∠C=600再根据余弦定理,得:c2=a2+b2-2abcos600,
即c2=a2+b2-ab,所以a2+b2-ab=ab,故(a2-b)2=0,所以a=b,
所以△ABC为等边三角形。
综上所述,判定三角形的形状时,必须熟练掌握三角形边与边、边与角之间的关系,在具体解题时要分析清楚题目所给的条件与课

本所学过的知识点之间的联系,从而正确使用所学知识,以达到解决问题的目的。

转载于http://blog.sina.com.cn/s/blog_48c7289c0100uwgh.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值