傅里叶级数(Fourier Series)

Baron Jean Baptiste Joseph Fourier (1768−1830) introduced the idea that any periodic function can be represented by a series of sines and cosines which are harmonically related.

Basic Definition

A function f(x) is said to have period P if f(x+P)=f(x) for all x. Let the function f(x) has period 2\pi. In this case, it is enough to consider behavior of the function on the interval [-\pi, \pi].

  • Suppose that the function f(x) with period 2\pi is absolutely integrable on [-\pi, \pi] so that the following so-called Dirichlet integral is finite:\int _{-\pi}^{\pi}|f(x)|dx< \infty;
  • Suppose also that the function f(x) is a single valued, piecewise continuous (must have a finite number of jump discontinuities), and piecewise monotonic (must have a finite number of maxima and minima).

If the conditions 1 and 2 are satisfied, the Fourier series for the function f(x) exists and converges to the given function. At a discontinuity x_0, the Fourier Series converges to lim_{\varepsilon \rightarrow 0}\frac{1}{2}[f(x_0-\varepsilon )-f(x_0+\varepsilon )]. The Fourier series of the function f(x) is given by

f(x)=\frac{a_{0}}{2}+\sum ^\infty _{n=1}[a_ncos(nx)+b_nsin(nx)],

where the Fourier coefficients a_0, a_n, and b_n are defined by the integrals

a_0=\frac{1}{\pi}\int^{\pi}_{-\pi} f(x)dx, \quad a_n=\frac{1}{\pi}\int^{\pi}_{-\pi} f(x)cos(nx)dx, \quad b_n=\frac{1}{\pi}\int^{\pi}_{-\pi} f(x)sin(nx)dx.

Sometimes alternative forms of the Fourier series are used. Replacing a_n and b_n by the new variables d_{n} and \varphi _n or d_{n} and \theta _n, where

d_n=\sqrt {a^2_n+b^2_n}, \quad tan\varphi _n=\frac{a_n}{b_n}, \quad tan\theta _n=\frac{b_n}{a_n},

we can write:

f(x)=\frac{a_{0}}{2}+\sum ^\infty _{n=1}[d_nsin(nx+\varphi _n)] \quad or \quad f(x)=\frac{a_{0}}{2}+\sum ^\infty _{n=1}[d_ncos(nx+\theta _n)].

Fourier Series of Even Functions

The Fourier series expansion of an even function f(x) with the period of 2\pi does not involve the terms with sines and has the form:

f(x)=\frac{a_{0}}{2}+\sum ^\infty _{n=1}[a_ncos(nx)],

where the Fourier coefficients are given by the formulas

a_0=\frac{1}{\pi}\int^{\pi}_{-\pi} f(x)dx, \quad a_n=\frac{2}{\pi}\int^{\pi}_{0} f(x)cos(nx)dx.

Fourier Series of Odd Functions

Accordingly, the Fourier series expansion of an odd 2\pi-periodic function f(x) consists of sine terms only and has the form:

f(x)=\sum ^\infty _{n=1}[b_nsin(nx)],

where the coefficients b_n are

b_n=\frac{2}{\pi}\int^{\pi}_{0} f(x)sin(nx)dx.

Examples

Example 1

Let the function f(x) be 2\pi-periodic and suppose that it is presented by the Fourier series:

f(x)=\frac{a_0}{2}+\sum^\infty _{n=1}(a_ncosnx+b_nsinnx)

Calculate the coefficients a0, an, and bn.

Solution 1

To define a0, we integrate the Fourier series on the interval [−π,π]:

\int ^\pi_{-\pi}f(x)dx=\pi a_0+\sum^\infty _{n=1}[a_n\int ^\pi_{-\pi}cosnxdx+b_n\int ^\pi_{-\pi}sinnxdx]

For all n>0,

\int ^\pi_{-\pi}cosnxdx=(\frac{sinnx}{n})|^\pi_{-\pi}=0 \quad and \int ^\pi_{-\pi}sinnxdx=(-\frac{cosnx}{n})|^\pi_{-\pi}=0.

Therefore, all the terms on the right of the summation sign are zero, so we obtain

\int ^\pi_{-\pi}f(x)dx=\pi a_0 \quad or \quad a_0=\frac{1}{\pi}\int ^\pi_{-\pi}f(x)dx.

In order to find the coefficients an, we multiply both sides of the Fourier series by cosmx and integrate term by term:

\int ^\pi_{-\pi}f(x)cosmxdx=\frac{a_0}{2}\int ^\pi_{-\pi}cosmxdx+\sum^\infty_{n=1}[a_n\int ^\pi_{-\pi}cosnxcosmxdx+b_n\int ^\pi_{-\pi}sinnxcosmxdx].

The first term on the right side is zero. Then, using the well-known trigonometric identities, we have

\int ^\pi_{-\pi}f(x)sinnxcosmxdx=\frac{1}{2}\int ^\pi_{-\pi}[sin(n+m)x+sin(n-m)x]dx=0,

\int ^\pi_{-\pi}f(x)cosnxcosmxdx=\frac{1}{2}\int ^\pi_{-\pi}[cos(n+m)x+cos(n-m)x]dx=0,

if m\neq n. In case when m=n, we can write:

\int ^\pi_{-\pi}f(x)sinnxcosmxdx=\frac{1}{2}\int ^\pi_{-\pi}[sin(2m)x+sin0]dx=0,\Rightarrow \int ^\pi_{-\pi}sin^2mxdx=\frac{1}{2}[(-\frac{cos2mx}{2m})|^\pi_{-\pi}]=0;

\int ^\pi_{-\pi}f(x)cosnxcosmxdx=\frac{1}{2}\int ^\pi_{-\pi}[cos(2m)x+cos0]dx=0,\Rightarrow \int ^\pi_{-\pi}cos^2mxdx=\frac{1}{2}[(\frac{sin2mx}{2m})|^\pi_{-\pi}+2\pi]=\frac{1}{4m}[sin(2m\pi)-sin(2m(-2\pi))]+\pi=\pi.

Thus,

\int ^\pi_{-\pi}f(x)cosmxdx=a_m\pi, \Rightarrow a_m=\frac{1}{\pi}\int ^\pi_{-\pi}f(x)cosmxdx, m=1,2,3,...

Similarly, multiplying the Fourier series by sinmx and integrating term by term, we obtain the expression for bm:

b_m=\frac{1}{\pi}\int ^\pi_{-\pi}f(x)sinmxdx, m=1,2,3,....

Rewriting the formulas for an, bn, we can write the final expressions for the Fourier coefficients:

a_n=\frac{1}{\pi}\int ^\pi_{-\pi}f(x)cosnxdx, \quad b_n=\frac{1}{\pi}\int ^\pi_{-\pi}f(x)sinnxdx.

Example 2

Find the Fourier series for the square 2π-periodic wave defined on the interval [−π,π]:

f(x)=\left\{\begin{matrix} 0, \quad if -\pi\leq x\leq 0\\ 1, \quad if 0<x\leq\pi \end{matrix}\right.

Solution 2

First we calculate the constant a0:

a_0=\frac{1}{\pi}\int^\pi_{-\pi}f(x)dx=\frac{1}{\pi}\int^\pi_{0}1dx=\frac{1}{\pi}\pi=1.

Find now the Fourier coefficients for n≠0:

a_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)cosnxdx=\frac{1}{\pi}\int^\pi_{-\pi}1\cdot cosnxdx=\frac{1}{\pi}[(\frac{sinnx}{n})|^\pi_{-\pi}]=\frac{1}{n\pi}\cdot0=0,

b_n=\frac{1}{\pi}\int^\pi_{-\pi}f(x)sinnxdx=\frac{1}{\pi}\int^\pi_{0}1\cdot sinnxdx=\frac{1}{\pi}[(-\frac{cosnx}{n})|^\pi_{0}]=-\frac{1}{n\pi}\cdot(cosn\pi-cos0)=\frac{1-cosn\pi}{n\pi}.

As cosn\pi=(-1)^\pi, we can write:

b_n=\frac{1-(-1)^n}{n\pi}.

Thus, the Fourier series for the square wave is

f(x)=\frac{1}{2}+\sum^\infty _{n=1}\frac{1-(-1)^n}{n\pi}sinnx.

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力的老周

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值