在Mapper中的map、以及Reducer中的reduce都有一个Context的类型
1 public void map(Object key, Textvalue, Context context)
2 throwsOException,InterruptedException{
3 StringTokenizer itr = new StringTokenizer(value.toString());
4 while (itr.hasMoreTokens()) {
5 word.set(itr.nextToken());
6 context.write(word, one);
7 }
8 }
9
10 public void reduce(Text key, Iterable values,Contextcontext)
11 throws IOException,InterruptedException {
12 int sum = 0;
13 for (IntWritable val : values){
14 sum += val.get();
15 }
16 result.set(sum);
17 context.write(key, result);
18 }
可以了解到,context应该是用来传递数据以及其他运行状态信息,map中的key、value写入context,让它传递给Reducer进行reduce,而reduce进行处理之后数据继续写入context,继续交给Hadoop写入hdfs系统。
从继承结构可以看出MapContext与ReduceContext均继承TaskInputOutputContext,没有重写继承而来的方法,所以它们继承的都是一致的)
java.lang.object
org.apache.hadoop.mapreduce.JobContext
org.apache.hadoop.mapreduce.TaskAttemptContext
org.apache.hadoop.mapreduce.TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> org.apache.hadoop.mapreduce.MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> org.apache.hadoop.mapreduce.ReduceContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
mapreduce中的context类
最新推荐文章于 2022-06-10 19:27:27 发布