韩国老年人经济活动与健康关联

65岁及以上成年人的经济活动与健康状况:韩国老龄化纵向研究的发现

1. 引言

1.1 背景

由于社会快速老龄化和长期经济衰退,现有的社会文化结构发生了变化。因此,无论是欠发达国家还是高收入国家,都致力于降低年轻人的死亡率,并提高老年人口的比例[1,2]。近年来,老年人追求经济独立,并希望过上健康生活。此外,研究发现老年人的社会参与和经济活动有助于改善其个人生活和健康状况[3]。虽然健康状况差会限制老年人的社会活动[4],但社会资本对其健康具有直接和间接的影响[5]。老年人经济活动的指数与其健康状况密切相关。在已退休的老年人中,工作限制与健康状况差相关[6]。此外,社会经济水平影响老年人的健康状况[7]。一项针对韩国65岁及以上健康保险参保人和医疗援助受助人的健康状况研究发现,后者患某种疾病的发病率是前者的两倍,中风或心肌梗死[8]。此外,另一项研究表明,无业老年人进行定期体检的可能性比有业者低0.84倍,但这两项研究的结果均无统计学意义[9]。洪等人报告称,疾病易感性与经济活动相关[8],而有工作或参与邻里社会活动的老年人具有最佳的主观健康意识[10]。研究人员已采用不同方法分析了老年人的社会活动与健康状况。因此,虽然一项研究指出社会经济水平对身体健康具有直接和间接影响[11],但另一项研究则报告职业与健康问题无关[12]。以往研究为探讨人口统计学特征、健康行为以及慢性病和老年病发病率与健康之间的关系提供了基础。然而,尚无研究明确指出在人口统计学特征、健康行为和经济活动之中,哪一个因素对老年人健康状况的影响最为显著。因此,本研究旨在基于健康状况决定个体生活方式这一事实,通过比较包括社会人口学特征、健康行为和经济活动在内的各项因素对老年人健康状况的影响,来深入探究老年人的健康状况。此外,本研究还根据研究结果,即个体的生活方式决定了男性和女性群体的健康状况,对男性受试者和女性受试者的健康状况进行了比较[13]。根据系统综述的结果,社会地位与主观健康和幸福感相关[13]。此外,影响老年人健康的最重要因素之一是社会经济地位[14]。老年人问题在韩国及其他国家都十分重要。因此,目前已有大量研究致力于保障老年人在未来维持其生活质量和健康水平。

1.2 研究对象

这项横断面研究探讨了65岁及以上人群参与经济活动与健康状况之间的关联。因此,本研究旨在实现以下三个目标:(1)确定劳动者与非劳动者的 人口统计学特征 ,(2)调查 经济活动 健康状况 之间的关联,以及(3)分析影响男性和女性 主观健康 的因素。

2. 材料与方法

2.1 研究数据

本研究使用了由韩国劳动研究院提供的韩国老龄化纵向研究(KLoSA)原始数据(批准编号 33602)。KLoSA是一项面板调查(2006–2014),旨在调查韩国45岁以上老年人的衰老过程。KLoSA旨在建立可衡量老龄化各个方面的数据,并构建可用于对老龄人口进行国际比较的数据,从而为今后制定和实施有效的社会经济政策提供基础。KLoSA的目标是收集能够衡量老龄化多个方面的数据,并构建允许对老龄人口进行国际比较的数据,这些数据将作为未来制定和实施有效社会经济政策的基础。KLoSA的抽样框架采用计算机辅助个人访谈(CAPI)方法进行人口与住房普查。本研究分析所使用的数据为第五年(2014年)研究数据,该数据于2014年7月至11月期间通过CAPI在5个月内收集完成。KLoSA的调查方法参考了美国[16]、英格兰[17]和欧洲[18]的相关报告。本研究的机构审查委员会(IRB)审批被研究伦理审查所替代。韩国劳动研究院向研究项目发送了意向书,并将该信函及相关通知转交至调查方。在获得受访者书面同意后,确认调查得以实施。

2.2 结果变量

在本研究中,参与者被问及“您如何评估自己的主观健康状况?” 主观健康状况 由参与者使用五点量表进行评分(范围从1到5,其中1表示非常好的主观健康,5表示非常差的主观健康)。将非常健康、健康和通常健康的结果变量归入健康组,而将非常差的健康和不良健康的结果变量归入不良健康组。

2.3 材料与项目

问卷项目被分为人口统计学特征、健康行为和经济活动三类。人口统计学特征包括性别(男性和女性)、婚姻状况(已婚和其他)、教育水平(小学、中学和高于高中)以及居住地区(大城市和小城市或城镇)。健康行为包括吸烟(非吸烟者、前吸烟者和吸烟者)、饮酒(非饮酒者和饮酒者)以及肥胖状况(肥胖、超重、正常和体重不足)。肥胖通常指一个人体内的脂肪含量超过仅仅是超重的人,而超重的人只是体重比正常人更重[19]。与健康行为和人口统计学特征相关的变量是基于先前的一项研究选定的[20]。经济活动包括国家健康保险覆盖情况(由国家健康保险覆盖和由医疗援助计划覆盖)、是否享有私人健康保险以及就业状况(领薪工人、自雇人士、无薪家庭工人和失业)。无薪家庭工人被归类为一个异质性的家庭成员群体,包括家庭主妇、老年人和儿童。他们没有获得薪水,但属于参与经济活动的一类人[21]。根据最近的一项研究,老年无薪家庭工人报告主观身体健康的概率显著更高[22]。

2.4 数据分析

我们进行了交叉表分析,以根据研究目的探讨劳动者与非劳动者的特征,并使用卡方检验进行显著性检验。采用筛选方法进行多元回归分析,以确定影响劳动者与非劳动者主观健康状况的因素。此外,霍斯默‐莱梅肖检验的卡方值为5.666,显著性概率为0.050。所有分析的显著性水平均设定在0.05以下。统计分析使用PASW 20.0(美国伊利诺伊州芝加哥SPSS公司)进行。

3. 结果

3.1 结果变量

就主观健康状况这一结果变量而言,31.6%的工人(N = 346)和68.4%的非工作者(N = 748)报告自己处于健康状态。相比之下,19.6%的工人(N = 615)和80.4%的非工作者(N = 2517)报告自己处于不良健康状态。两组在主观健康状况上存在统计学显著差异(p< 0.001)(未提供表格)。

3.2 研究对象的人口统计学特征

4226名受试者(劳动者与非劳动者)的数据被纳入分析。就业状况在统计学上与性别(p< 0.001)、婚姻状况(p< 0.001)、教育水平(p < 0.001)、居住地区(p< 0.001)、吸烟状况(p < 0.001)以及肥胖状况(p< 0.001)相关。参考一般特征,劳动者中男性占61.7%,女性占38.3%;81.7%的劳动者为已婚。小学毕业生占56.2%样本中,拥有高于高中教育水平的人占27.2%。此外,26.7%的样本居住在大城市,73.3%居住在小城市或城镇。前吸烟者占样本的22.5%,而吸烟者占17.2%。另外,40.9%的工人报告饮酒。最后,18.5%的工人属于正常体重,45.4%为肥胖(表1)。

变量 分类 总计 工人 (N = 346) 非工作者 (N = 748) p‐值
性别 Man 1783 593(61.7) 1190(36.4) <0.001
女性 2443 368 (38.3) 2075 (63.6)
婚姻状况 已婚 2815 785 (81.7) 2030 (62.2) <0.001
其他(单身和离婚) 1411 176 (18.3) 1235 (37.8)
教育 小学 2626 540 (56.2) 2086 (63.9) <0.001
中学 610 160 (16.6) 450 (13.8)
高中以上 990 261 (27.2) 729 (22.3)
Area 大城市 (人口超过1,000,000) 1670 257 (26.7) 1413 (43.3) <0.001
小城市或城镇 2556 704 (73.3) 1852 (56.7)
吸烟 (N = 4166) 非吸烟者 2972 570 (60.3) 2402 (74.6) <0.001
前吸烟者 779 213 (22.5) 566 (17.6)
吸烟者 415 163 (17.2) 252 (7.8)
饮酒 (N = 4063) 非饮酒者 1825 551 (59.1) 1274 (40.7) <0.001
饮酒者 2238 382 (40.9) 1856 (59.3)
肥胖 (N= 4101) 肥胖 935 174 (18.5) 761 (24.1) <0.001
超重 1095 304 (32.3) 791 (25.0)
正常 1818 428 (45.4) 1390 (44.0)
体重不足 253 36 (3.8) 217 (6.9)

在非工作者群体中,36.4%的参与者为男性,63.6%为女性,62.2%的非工作者已婚。小学毕业生占样本的63.9%,而具有高中以上教育程度者占样本的22.3%。此外,43.3%的非工作者居住在大城市,56.7%居住在小城市或城镇。前吸烟者和吸烟者分别占样本的17.6%和7.8%。最后,24.1%和44.0%的非工作者分别为正常体重和肥胖(表1)。

3.3 经济活动与健康状况的相关性

经济活动与那些由国家健康保险覆盖的人群(p< 0.001)、拥有私人健康保险的人群(p< 0.001)以及受雇者(p< 0.001)的健康状况存在统计学上的显著相关性。此外,26.9%由国家健康保险覆盖的人和13.2%由医疗援助计划覆盖的人健康状况良好。另外,38.7%拥有私人健康保险的人和24.0%无保险的参与者健康状况良好。最后,38.7%领取薪水的参与者、37.1%自雇人士、25.0%无薪家庭工人以及22.9%失业人员健康状况良好(表2)。

变量 分类 总计 健康状况良好 (N = 1454) 健康状况差 (N = 3132) p‐值
国家健康保险 国家健康保险 3922 1054 (26.9) 2868 (73.1) <0.001
医疗援助计划 304 40 (13.2) 264 (86.8)
私人健康保险 保险单持有人 551 213 (38.7) 338 (61.3) <0.001
非保险单持有人 3675 881 (24.0) 2794 (76.0)
就业形式 就业 工薪劳动者 323 125 (38.7) 198 (61.3)
自营 510 189 (37.1) 321 (62.9)
无薪家庭工人 128 32 (25.0) 96 (75.0)
失业 3265 748 (22.9) 2517 (77.1)
### 3.4 65岁及以上男性主观健康状况
在男性中,已婚者的平均主观健康评分为1.697(1.170–2.461),在调整了人口统计学特征和健康行为后,高于未婚者。具有高中以上教育程度者的平均评分为1.893(1.490–2.405),高于小学毕业生。在调整了人口统计学特征、健康行为和经济活动后,教育水平较高者的主观健康状况优于其他组别。由国家医疗保险覆盖者的平均主观健康状况评分为2.005(1.173–3.427),高于由医疗援助计划覆盖者。此外,私人健康保险申请人的平均评分(1.629(1.221–2.172))也高于由医疗援助计划覆盖者。最后,工薪阶层的平均主观健康状况评分为1.767(1.256–2.3487),高于失业群体。自雇人士的平均评分为1.666(1.278–2.170),也高于失业群体。该结果表明,经济活动和健康公平有助于改善老年人的健康状况(表3)。
变量 分类 模型*(95%置信区间) 模型†(95% CI)
婚姻状况 其他(单身和离婚) 1 1
已婚 1.697(1.170–2.461) 1.440(0.982–2.112)
教育 小学 1 1
中学 1.305(0.970–1.756) 1.232(0.910–1.669)
高中以上 1.893(1.490–2.405) 1.823(1.427–2.330)
Area 大城市 1 1
小城市或城镇 1.033(0.832–1.283) 1.123(0.896–1.408)
吸烟 吸烟者 1 1
非吸烟者 1.131(0.847–1.511) 1.231(0.916–1.654)
前吸烟者 0.748(0.564–0.994) 0.825(0.618–1.103)
饮酒 饮酒者 1 1
非饮酒者 1.095(0.844–1.421) 1.068(0.820–1.391)
肥胖 肥胖 1 1
超重 1.357(1.001–1.838) 1.318(0.968–1.796)
正常 0.895(0.671–1.193) 0.921(0.688–1.234)
体重不足 0.400(0.224–0.712) 0.454(0.253–0.814)
国家健康保险 医疗援助计划 – 1
国家健康保险 – 2.005(1.173–3.427)
私人健康保险 非保险单持有人 – 1
保险单持有人 – 1.629(1.221–2.172)
就业 失业 – 1
工薪劳动者 – 1.767(1.256–2.487)
自营 – 1.666(1.278–2.170)
无薪家庭工人 – 0.738(0.257–2.120)

* 根据人口统计学特征(性别、婚姻状况、教育水平和居住地区)以及健康行为(吸烟、饮酒和肥胖状况)进行调整。
†根据人口统计学特征(性别、婚姻状况、教育水平和居住地区)、健康行为(吸烟、饮酒和肥胖状况)以及经济活动(由国家医疗保险覆盖、由私人健康保险覆盖和就业状况)进行调整。

3.5 主观健康状况的女性65岁及以上以上

在女性受试者中,高教育水平受试者的主观健康状况平均得分为2.616(1.948–3.514),高于低教育水平受试者;因此,在调整了人口统计学特征和健康行为后,女性的健康状况呈上升趋势。在经济活动方面,享有国民健康保险者的平均得分为1.865(1.142–3.045),而私人健康保险和就业对主观健康状况均有提升趋势,但未达到统计学显著性水平。该结果表明,经济活动和经济准备有助于改善老年人的健康状况(表4)。

变量 分类 模型*(95%置信区间) 模型†(95% CI)
婚姻状况 其他(单身和离婚) 1 1
已婚 1.269(1.023–1.576) 1.182(0.944–1.478)
教育 小学 1 1
中学 1.356(0.992–1.855) 1.310(0.955–1.796)
高中以上 2.716(2.030–3.633) 2.616(1.948–3.514)
Area 大城市 1 1
小城市或城镇 0.800(0.644–0.994) 0.835(0.670–1.041)
吸烟 吸烟者 1 1
非吸烟者 1.026(0.449–2.347) 0.885(0.383–2.048)
前吸烟者 1.188(0.421–3.354) 1.084(0.380–3.089)
饮酒 饮酒者 1 1
非饮酒者 0.957(0.733–1.250) 0.924(0.705–1.212)
肥胖 肥胖 1 1
超重 1.219(0.912–1.629) 1.192(0.890–1.595)
正常 1.245(0.959–1.614) 1.235(0.951–1.604)
体重不足 0.629(0.355–1.114) 0.632(0.357–1.121)
国家健康保险 医疗援助计划 – 1
国家健康保险 – 1.865(1.142–3.045)
私人健康保险 非保险单持有人 – 1
保险单持有人 – 1.347(0.994–1.826)
就业 失业 – 1
工薪劳动者 – 1.114(0.719–1.727)
自营 – 1.113(0.705–1.756)
无薪家庭工人 – 1.227(0.763–1.973)

* 根据人口统计学特征(性别、婚姻状况、教育水平和居住地区)以及健康行为(吸烟、饮酒和肥胖状况)进行调整。
†根据人口统计学特征(性别、婚姻状况、教育水平和居住地区)、健康行为(吸烟、饮酒和肥胖状况)以及经济活动(由国家医疗保险覆盖、由私人健康保险覆盖和就业状况)进行调整。

4. 讨论

男性的主观健康受经济活动、人口统计学特征和健康行为的影响更大。Wilcock等人认为,从经济活动角度来看,职业并未完全与健康问题相关联[12]。我们的研究结果与他们的观点不同;然而,洪和金的研究结果支持了本研究的发现,他们发现由国家医疗保险覆盖的人群主观健康状况更高[8]。此外,他们还发现老年医疗援助受益者的发病率高于国家健康保险参保人[8]。我们基于健康结果取决于受试者个人生活方式的假设,按性别分析了健康状况[13]。结果表明,参与经济活动有助于改善男性受试者的主观健康状况。以往研究表明,由于社会人口地位与性别、婚姻状况和社会经济地位呈正相关,因此会影响主观健康状况[14,15,23]。人们认为,领取薪水的和自雇人士的劳动、生产及经济消费对其主观健康状况及其他因素具有积极影响。李认为,通过经济活动中介的健康会影响生活满意度[24],而另一项研究的作者则主张,它会中介个体的社交网络,包括生活质量[8]、健康行为、医疗服务可及性以及社会参与[25]。

已有若干因素被发现会影响老年人的主观健康状况。然而,本研究发现健康状况的差异是由经济活动所导致的。金认为,健康状况与收入和财产所有权有关,而收入和财产所有权是经济活动的指标[26],另一项研究表明,不同社会经济水平的老年人之间存在健康差距<74[27]。李指出,尽管老年人在生活满意度上差异不大,但其主观健康状况因经济参与情况而存在显著差异[24]。此外,受雇者以及收入较高的群体其感知的主观健康状况更高,并且更易促进与他人的友谊[10]。可以认为,社会经济地位较好的老年人对其自身健康状况具有积极期望[23]。此外,参与经济活动的老年人进行定期体检的可能性是失业老年人的3.97倍[28]。因此,经济活动的参与可能是影响老年人主观健康状况的主要变量。另一方面,研究结果还显示,无配偶或收入较低的老年人遭受更多歧视[29],表明老年人在维持健康状况方面面临巨大压力[10]。因此,尽管可以推断老年人的主观健康状况与其经济活动或经济水平之间存在关联,但这一发现尚不足以说明其因果关系。

在本研究中,女性的主观健康状况仅与是否由国家医疗保险覆盖显著相关。然而,已婚女性的主观健康状况高于未婚女性。因此,可以认为女性的主观健康状况更多地受到其人口统计学特征的影响,而非经济活动。此外,女性的健康状况还与其配偶的经济活动及社会人口背景相关。金指出,女性的慢性病发病率高于男性,且主观健康状况低于男性[26];但尚不清楚这种差异是否源于其经济活动。因此,今后有必要基于女性的经济活动对其健康状况的差异进行分析。老年人属于社会活跃群体,不应被忽视。因此,有必要实施适当的就业促进政策,以支持老年人的经济活动。老年人的经济活动是满足其多种需求的重要因素,包括缓解贫困、提高生活质量以及促进日常生活活动和健康。金指出,低收入、健康状况以及老年性疾病的发生率是影响医疗保险获取和医疗援助的重要因素[30]。

5. 结论

本研究旨在促进老年人的健康和社会参与,分析了65岁及以上老年人经济活动与健康状况之间的关系。
总之,影响韩国老年男性自评健康的因素比女性更多。此外,他们的自评健康状况会影响其经济活动。因此,有必要考虑老年人的健康公平,并通过制定适当政策来解决健康不平等问题,以保障医疗保健服务。

内容概要:本文围绕无人机集群路径规划问题展开研究,采用五种优化算法(SFOA、APO、GOOSE、CO、PIO)【无人机集群路径规划】基于5种优化算法(SFOA、APO、GOOSE、CO、PIO)求解无人机集群路径规划研究(Matlab代码实现)进行求解,并提供了基于Matlab的代码实现。文章重点探讨了这些智能优化算法在复杂环境下的路径搜索能力、收敛性能及避障策略,通过仿真实验对比分析各算法在无人机集群协同路径规划中的有效性优劣,旨在提升多无人机系统的任务执行效率路径最优性。研究内容涵盖了路径规划的数学建模、适应度函数设计、约束条件处理以及多机协同机制,展示了优化算法在实际工程问题中的应用价值。; 适合人群:具备一定Matlab编程基础和优化算法知识的科研人员、自动化或计算机相关专业的研究生及高年级本科生,以及从事无人机系统开发智能控制领域的技术人员。; 使用场景及目标:①用于解决多无人机协同执行侦察、监测、救援等任务时的路径规划问题;②为智能优化算法在复杂空间搜索问题中的性能对比提供实验平台;③辅助科研人员复现算法结果、开展进一步改进创新研究; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建参数设置对优化结果的影响,建议通过调整环境障碍物布局和无人机数量进行扩展实验,以增强对算法鲁棒性和可扩展性的认识。
【源码免费下载链接】:https://renmaiwang.cn/s/v99wg Element UI 是一个基于 Vue.js 的开源 UI 组件库,集成丰富且易用的界面组件,显著提升了开发者构建 web 应用的效率。在本项目中,我们专注于对 "select" 多选组件进行重构优化,旨在增强其功能和用户体验。该组件作为用户选择交互元素的核心部分,在 Element UI 中通过 `el-select` 实现了单选多选模式切换,并支持自定义样式及行为表现。 在重构过程中需要考虑以下几点:首先,动态标签显示方面,“标签根据数据属性显示颜色不同”可以通过数据绑定实现多样化的视觉反馈;其次,允许多选操作时可以灵活设置 `multiple` 属性值,同时存储选定项数组以支持多选功能扩展;再次,在插件集成方面,可能需要引入第三方库或自定义插件以扩展组件功能如筛选、搜索分页等实用场景。 此外,在事件处理部分,可以通过配置组件提供的change、focus及blur事件来实现状态更新反馈机制;同时,确保组件具备良好的可访问性特征,兼顾键盘导航屏幕阅读器兼容;最后,在性能优化方面,若原组件在大数据量下存在渲染延迟问题,则可通过虚拟滚动、懒加载等技术提升整体运行效率。通过以上改进建议,我们可以更充分地挖掘 Element UI select 组件的潜力,并实现其有效结合以满足复杂应用场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值