n-gram模型

32 篇文章 232 订阅 ¥99.90 ¥299.90
N-gram是一种统计语言模型,常用于NLP任务如文本生成、分类和语音识别。它通过分析grams的频率估计词的出现概率,但难以处理长距离依赖。在实践中,N-gram常与更复杂模型结合使用。
摘要由CSDN通过智能技术生成

N-gram是一种基于统计的语言模型,它基于一个假设,即一个词的出现仅与它前面的N-1个词有关,而与更远的词无关。

N-gram模型通常用于自然语言处理(NLP)任务,如文本生成、文本分类、机器翻译、拼写检查和语音识别等。在N-gram模型中,文本被分解为一连串连续的词或字节片段,这些片段被称为grams。模型通过统计这些grams在训练语料库中的出现频率来估计下一个词出现的概率。

例如,一个2-gram(Bi-gram)模型考虑的是连续两个词的序列,如“I love”;而3-gram(Tri-gram)模型则是三个词的序列,如“I love you”。N-gram模型的优点是简单且能够有效处理文本数据,但它的一个主要缺点是无法捕捉长距离的依赖关系,因此在处理复杂语言结构时可能效果不佳。在实际应用中,N-gram模型通常与其他更复杂的模型(如神经网络语言模型)结合使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值