基尼不纯度:衡量集合的无序程度;
基尼不纯度
基尼不纯度:有放回抽样两次,两次样本标签不同的概率。

1、显然基尼不纯度越小,纯度越高,集合的有序程度越高;
2、基尼不纯度为 0 时,表示集合类别一致;
3、基尼不纯度最高(纯度最低)时,f1=f2=…=fm=1/m

例,如果集合中的每个数据项都属于同一分类,此时基尼不纯度为 0。如果有四种可能的结果均匀地分布在集合中,此时的基尼不纯度为 1−0.25=0.75;
from collections import Counter
import operator
def calcGini(dataSet):
labelCounts = Counter(sample[-1] for sample in dataSet)
prob = [float(v)/sum(labelCounts.values()) for v in labelCounts.values()]
return 1 - reduce(operator.add, map(lambda x: x**2, prob))
基尼不纯度是评估分类数据集纯度的一种度量,它表示有放回抽样两次,两次样本标签不同的概率。当基尼不纯度为0时,集合类别一致,纯度最高;而当各分类比例相等时,基尼不纯度达到最大。例如,集合中所有数据属于同一分类时,基尼不纯度为0,四种分类均匀分布时,则基尼不纯度为0.75。
2789

被折叠的 条评论
为什么被折叠?



