fasttext.train_supervised函数允许用户通过一系列参数来定制训练过程,这些参数包括但不限于学习率(lr)、维度(dim)、周期次数(epoch)、词形(wordNgrams)、最小计数(minCount)等。以下是这些参数的详细解释:
学习率(lr)
这是一个重要的超参数,决定了模型在学习过程中的步长大小。较大的学习率可能导致模型在训练过程中不稳定,而较小的学习率则可能导致训练速度较慢。fasttext推荐的学习率范围是[0.01, 1]。
维度(dim)
这指的是词向量的维度,即词嵌入的空间大小。维度越大,词向量的表达能力越强,但同时也会增加模型的复杂度和计算成本。
周期次数(epoch)
这表示整个数据集将被完整地遍历多少次。增加周期次数可以让模型更充分地学习数据中的信息,但过多的周期次数可能导致过拟合。
词形(wordNgrams)
这决定了在构建词向量时是否使用n-gram特征。使用n-gram特征可以帮助模型更好地捕捉词的形态和语境信息
订阅专栏 解锁全文
392

被折叠的 条评论
为什么被折叠?



