鸽巢排序,排序字节串、宽字节串最快的排序算法,计数排序的变种(将计数缓冲区大小固定,少一次遍历开销),速度是STL中std::sort的20多倍 ,更重要的是实现极其简单!缺点是需要一个size至少等于待排序数组取值范围的缓冲区,不适合int等大范围数据
-
C/C++ code
-
void PigeonholeSort(BYTE * array, int length)
{
int b[ 256 ] = { 0 };
int i,k,j = 0 ;
for (i = 0 ; i < length; i ++ )
b[array[i]] ++ ;
for (i = 0 ; i < 256 ; i ++ )
for (k = 0 ; k < b[i]; k ++ )
array[j ++ ] = i;
}
多一次遍历的计数排序,排序字节串的话速度约是鸽巢排序的一半
-
C/C++ code
-
void CountingSort(BYTE * array, int length)
{
int t;
int i, z = 0 ;
BYTE min,max;
int * count;
min = max = array[ 0 ];
for (i = 0 ; i < length; i ++ )
{
if (array[i] < min)
min = array[i];
else if (array[i] > max)
max = array[i];
}
count = ( int * )malloc((max - min + 1 ) * sizeof ( int ));
for (i = 0 ; i < max - min + 1 ; i ++ )
count[i] = 0 ;
for (i = 0 ; i < length; i ++ )
count[array[i] - min] ++ ;
for (t = min ; t <= max ; t ++ )
for (i = 0 ; i < count[t - min]; i ++ )
array[z ++ ] = (BYTE)t;
free(count);
}
快速排序,快排最标准的递归实现,速度约是std::sort的一半
-
C/C++ code
-
void swap(BYTE * a,BYTE * b)
{
BYTE tmp;
if ( a != b )
{
tmp = * a;
* a = * b;
* b = tmp;
}
}
int partition(BYTE * arr, int left, int right)
{
int i = left - 1 , j = right;
BYTE v = arr[right];
while ( 1 )
{
while (arr[ ++ i] < v);
while (arr[ -- j] > v)
if (j == 1 )
break ;
if (i >= j)
break ;
swap( & arr[i], & arr[j]);
}
swap( & arr[i], & arr[right]);
return i;
}
void quicksort(BYTE * arr, int left, int right)
{
if (left < right)
{
int i = partition(arr,left,right);
quicksort(arr,left,i - 1 );
quicksort(arr,i + 1 ,right);
}
}
void QuickSort(BYTE * array, int length)
{
quicksort(array, 0 ,length - 1 );
}
这是速度与std::sort相当的三路划分快排
-
C/C++ code
-
void swap(BYTE * a,BYTE * b)
{
BYTE tmp;
if ( a != b )
{
tmp = * a;
* a = * b;
* b = tmp;
}
}
void quicksort(BYTE * arr, int left, int right)
{
if (left < right)
{
BYTE v = arr[right];
int i = left - 1 ,j = right,p = left - 1 ,q = right,k = 0 ;
while ( 1 )
{
while (arr[ ++ i] < v);
while (arr[ -- j] > v)
if (j == left)
break ;
if (i >= j)
break ;
swap( & arr[i], & arr[j]);
if (arr[i] == v)
{
p ++ ;
swap( & arr[p], & arr[i]);
}
if (arr[j] == v)
{
q -- ;
swap( & arr[q], & arr[j]);
}
}
swap( & arr[i], & arr[right]);
j = i - 1 ;
i ++ ;
for (k = left; k <= p; k ++ ,j -- )
swap( & arr[k], & arr[j]);
for (k = right - 1 ; k >= q; k -- ,i ++ )
swap( & arr[k], & arr[i]);
quicksort(arr,left,j);
quicksort(arr,i,right);
}
}
void QuickSort(BYTE * array, int length)
{
quicksort(array, 0 ,length - 1 );
}
相当简单的梳排序,效率是std::sort的三分之一
-
C/C++ code
-
void CombSort(BYTE * arr, int size)
{
UINT gap = size, swapped = 1 , i = 0 ;
BYTE swap = 0 ;
while ((gap > 1 ) || swapped)
{
if (gap > 1 )
gap = gap / 1.3 ;
swapped = 0 ;
i = 0 ;
while ((gap + i) < size)
{
if (arr[i] - arr[i + gap] > 0 )
{
swap = arr[i];
arr[i] = arr[i + gap];
arr[i + gap] = swap;
swapped = 1 ;
}
++ i;
}
}
}
LSD基数排序,与std::sort速度相当,但是需要一个与输入缓冲一样大的缓冲区
-
C/C++ code
-
#define R 256
#define digit(a, d) ( a >> 8*d )
static BYTE * aux;
void radix_sort(BYTE * arr, int left, int right)
{
if (left < right)
{
int d = 0 ;
for (d = 3 ; d >= 0 ; d -- )
{
int i = 0 , j = 0 , count[R + 1 ];
for (j = 0 ; j < R; j ++ )
count[j] = 0 ;
for (i = left; i <= right; i ++ )
count[digit(arr[i],d) + 1 ] ++ ;
for (j = 1 ; j < R; j ++ )
count[j] += count[j - 1 ];
for (i = left; i <= right; i ++ )
aux[count[digit(arr[i],d)] ++ ] = arr[i];
for (i = left; i <= right; i ++ )
arr[i] = aux[i - 1 ];
}
}
}
void RadixSort(BYTE * array, int length)
{
aux = (BYTE * )malloc(length);
radix_sort(array, 0 ,length - 1 );
free(aux);
}
归并排序,效率越是std::sort的六分之一,通常的实现是递归,但和快排不同,归并改循环极其容易
-
C/C++ code
-
void merge(BYTE * array, int low, int mid, int high)
{
int i, k;
BYTE * temp = (BYTE * ) malloc(high - low + 1 );
int begin1 = low;
int end1 = mid;
int begin2 = mid + 1 ;
int end2 = high;
for (k = 0 ; begin1 <= end1 && begin2 <= end2; ++ k)
if (array[begin1] < array[begin2])
temp[k] = array[begin1 ++ ];
else
temp[k] = array[begin2 ++ ];
while (begin1 <= end1)
temp[k ++ ] = array[begin1 ++ ];
while (begin2 <= end2)
temp[k ++ ] = array[begin2 ++ ];
for (i = 0 ; i < (high - low + 1 ); i ++ )
array[low + i] = temp[i];
free(temp);
}
void merge_sort(BYTE * array, UINT first, UINT last)
{
UINT mid,i;
for (mid = 1 ; mid <= last - first; mid += mid)
for (i = first; i <= last - mid; i += mid + mid)
merge(array,i,i + mid - 1 ,min(i + mid + mid - 1 ,last));
}
void MergeSort(BYTE * array, UINT length)
{
merge_sort(array, 0 ,length - 1 );
}
这是堆排序,相对复杂些,效率是std::sort的四分之一
-
C/C++ code
-
UINT parent(UINT i)
{
return (UINT)floor(i / 2 );
}
UINT left(UINT i)
{
return 2 * i;
}
UINT right(UINT i)
{
return ( 2 * i + 1 );
}
void Max_Heapify(BYTE * A, UINT i, UINT length)
{
UINT l = left(i);
UINT r = right(i);
UINT largest;
BYTE temp;
if (l < length && A[l] > A[i])
largest = l;
else
largest = i;
if (r < length && A[r] > A[largest])
largest = r;
if (largest != i)
{
temp = A[i];
A[i] = A[largest];
A[largest] = temp;
Max_Heapify(A, largest, length);
}
}
void Build_Max_Heap(BYTE * A, UINT length)
{
int i = 0 ;
for (i = length; i >= 0 ; i -- )
Max_Heapify(A, i, length);
}
void HeapSort(BYTE * A, UINT length)
{
BYTE temp;
int i = 0 ;
Build_Max_Heap(A,length);
for (i = length - 1 ; i >= 1 ; i -- )
{
temp = A[ 0 ];
A[ 0 ] = A[i];
A[i] = temp;
length = length - 1 ;
Max_Heapify(A, 0 , length);
}
}
至于冒泡和选择,和以上这几种效率相差几个数量级 -