Alink文本读写组件使用起来非常简单,每个换行符对应一条数据,只需指定文件的路径即可。譬如,我们想看一下iris数据,但不想花时间详细定义其数据列名及类型,就可以将其每条数据简单地看作一行文本,使用TextSourceBatchOp,并设置文件路径的参数。
iris_text = TextSourceBatchOp().setFilePath("http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data")
iris_text.firstN(5).print()
输出结果为:
再举一个例子,在机器学习中经常需要将打好标签的数据拆分为训练集和验证集,由于拆分操作中每条记录的内容没有被改变,我们还是可以将每条记录都看作单行文本,并按文本的方式保存数据集。从而用更简洁的脚本,完成数据拆分的任务。运行脚本如下,SplitBatchOp为数据拆分算子,其参数Fraction即为拆分比例,
spliter = SplitBatchOp().setFraction(0.9)
spliter.linkFrom(iris_text)
spliter.link(
TextSinkBatchOp().setFilePath("/Users/yangxu/flinkml/data/iris/iris_part1.data")
)
spliter.getSideOutput(0).link(
TextSinkBatchOp().setFilePath("/Users/yangxu/flinkml/data/iris/iris_part2.data")
)
BatchOperator.execute()
执行完成后,我们还可以通过TextSourceBatchOp,读取打印一下iris_part2.data的数据,检查一下效果。
TextSourceBatchOp().setFilePath("/Users/yangxu/flinkml/data/iris/iris_part2.data").print()
输出结果如下,刚好15条数据,占iris数据集的10%