上一篇我们训练并保存了特征工程处理模型,我们这里需要使用特征工程处理模型,将批式原始训练数据转化为批式向量训练数据;将流式原始训练数据转化为流式向量训练数据;将流式原始预测数据转化为流式向量预测数据。

批式原始训练数据为:
trainBatchData = CsvSourceBatchOp()\
.setFilePath("http://alink-release.oss-cn-beijing.aliyuncs.com/data-files/avazu-small.csv") \
.setSchemaStr(schemaStr)
我们可以通过定义一个流式数据源,并按1:1的比例实时切分数据,从而得到流式原始训练数据、流式原始预测数据。
# prepare stream train data
data = CsvSourceStreamOp() \
.setFilePath("http://alink-release.oss-cn-beijing.aliyuncs.com/data-files/avazu-ctr-train-8M.csv") \
.setSchemaStr(schemaStr)
.setIgnoreFirstLine(True)
# split stream to train and eval data
spliter = SplitStreamOp().setFraction(0.5).linkFrom(data)
train_stream_data = spliter
test_stream_data = spliter.getSideOutput(0)
通过PipelineModel.load()方法,可以载入前面保存的特征工程处理模型。
# load pipeline model
feature_pipelineModel = PipelineModel.load(FEATURE_PIPELINE_MODEL_FILE)
Alink的PipelineModel既能预测批式数据,也可以预测流式数据,而且调用方式系统,使用模型实例的transform方法即可。
批式向量训练数据可以通过如下脚本得到:
feature_pipelineModel.transform(trainBatchData)
流式向量训练数据可以通过如下脚本得到:
feature_pipelineModel.transform(train_stream_data)
流式向量预测数据可以通过如下脚本得到:
feature_pipelineModel.transform(test_stream_data)
进一步,我们通过批式向量训练数据可以训练出一个线性模型作为后面在线学习FTRL算法的初始模型。如下面脚本所示,首先定义逻辑回归分类器lr,然后将批式向量训练数据“连接”到此分类器,输出结果便为逻辑回归模型。
# train initial batch model
lr = LogisticRegressionTrainBatchOp()\
.setVectorCol(vecColName) \
.setLabelCol(labelColName) \
.setWithIntercept(True) \
.setMaxIter(10)
initModel = feature_pipelineModel.transform(trainBatchData).link(lr)
1086

被折叠的 条评论
为什么被折叠?



