自信。

 

  做人要有自信,学习要有决心,我认为自信来源于成功,从一点一滴小的成功来积累自信,自信并不是一蹴而就的。

 

  每攻克一个难关,每解决一个难题,弄明白了一个没明白的问题,都会带来成功!甚至是成就感!

 

  努力让自己做每一件事都有成果,你才会既有自信,又有决心。学习无捷径,唯有勤奋。外加积累经验。各种经验。

### 使用 Faiss 获取向量匹配的自信度或相似度分数 在 Faiss 中,当执行最近邻搜索时,除了返回最接近的向量外,还会提供相应的距离得分。这些距离可以转换成某种形式的信任度或相似度评分。对于不同类型的测量标准(如欧几里得距离或内积),这种转换方式会有所不同。 #### 对于欧氏距离 (L2 Distance) 如果使用的是 L2 距离作为衡量指标,则可以通过下面的方式计算两个向量之间的相似程度: \[ \text{similarity} = e^{-\alpha d(x, y)} \] 其中 \(d(x,y)\) 表示两者的欧式距离,而 \(\alpha\) 则是一个调节因子用于调整曲线斜率[^2]。 #### 对于内积 (Inner Product) 当采用内积作为测距手段时,可以直接利用得到的结果作为相似度分值;因为归一化的向量之间做内积实际上就是它们夹角余弦值,在 [-1, 1] 区间取值越靠近 1 就意味着越相似[^3]。 下面是 Python 实现的例子,展示了如何从 Faiss 的查询结果中提取并解释相似度分数: ```python import faiss import numpy as np # 假设有 n 维向量组成的数据库 db_vectors 和待查向量 query_vector n = 100 # 向量维度 db_size = 10000 # 数据库大小 query_num = 5 # 查询数量 np.random.seed(42) database = np.random.random((db_size, n)).astype('float32') queries = np.random.random((query_num, n)).astype('float32') index = faiss.IndexFlatIP(n) # 创建一个基于内积的索引结构 faiss.normalize_L2(database) # 归一化数据集中的所有向量 faiss.normalize_L2(queries) # 归一化查询向量 index.add(database) # 添加到索引中 k = 4 # 返回前 k 个近似邻居 D, I = index.search(queries, k)# D 存储着对应的相似度分数; I 是下标数组 for i in range(query_num): print(f"Query {i}:") for j in range(k): score = D[i][j] idx = I[i][j] print(f"\tMatched with vector at position {idx}, similarity score={score:.6f}") ``` 在这个例子中,`D` 数组包含了每个查询与其找到的最佳匹配项间的相似度分数。由于这里选择了 `IndexFlatIP` 类型的索引,并且已经对输入进行了标准化处理,所以这里的分数实际上是余弦相似度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值