开飞机的小毛驴儿

天地有正气,杂然赋流形

正确率、召回率和F值

其实这东西没有必要非得记住怎么定义的,需要用衡量指标的时候过来查一查就知道了,原文在这里:http://www.cnblogs.com/scnucs/archive/2012/10/10/2718468.html

正确率、召回率和F值是在鱼龙混杂的环境中,选出目标的重要评价指标。

        不妨看看这些指标的定义先:

正确率 = 正确识别的个体总数 /  识别出的个体总数

召回率 = 正确识别的个体总数 /  测试集中存在的个体总数

F值  = 正确率 * 召回率 * 2 / (正确率 + 召回率)

        不妨举这样一个例子:某池塘有1400条鲤鱼,300只虾,300只鳖。现在以捕鲤鱼为目的。Seaeagle撒一大网,逮着了700条鲤鱼,200只虾,100只鳖。那么,这些指标分别如下:

正确率 = 700 / (700 + 200 + 100) = 70%

召回率 = 700 / 1400 = 50%

F值 = 70% * 50% * 2 / (70% + 50%) = 58.3%

        不妨看看如果Seaeagle把池子里的所有的鲤鱼、虾和鳖都一网打尽,这些指标又有何变化:

正确率 = 1400 / (1400 + 300 + 300) = 70%

召回率 = 1400 / 1400 = 100%

F值 = 70% * 100% * 2 / (70% + 100%) = 82.35%

        由此可见,正确率是评估捕获的成果中目标成果所占得比例;召回率,顾名思义,就是从关注领域中,召回目标类别的比例;而F值,则是综合这二者指标的评估指标,用于综合反映整体的指标。


阅读更多
个人分类: 计算机视觉
上一篇信息检索(IR)的评价指标介绍 - 准确率、召回率、F1、mAP、ROC、AUC
下一篇伯克利大学“机器学习(Practical Machine Learning)"课件及相关资料
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭