躺平摸鱼王
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15、深度神经网络高级加速技术详解
本文详细解析了深度神经网络(DNN)的高级加速技术,涵盖性能调试、作业迁移与复用以及异构环境下的模型训练等内容。通过使用NVIDIA Nsight工具进行GPU性能分析,结合计算与通信行为的优化,提升DNN模型的训练与推理效率。同时,文章探讨了如何在多GPU和异构硬件环境下合理分配资源,实现高效的模型训练,为深度学习的高性能计算提供实用指导。原创 2025-08-07 10:28:42 · 34 阅读 · 0 评论 -
14、分布式机器学习中的自适应模型训练与弹性推理
本文探讨了分布式机器学习中的自适应模型训练与弹性推理方法。内容涵盖联邦学习的基本概念、TensorFlow Lite在边缘设备上的应用、弹性训练与服务的挑战、自适应模型训练的技术要求与实现方法,以及模型推理的弹性策略和无服务器计算环境的应用。通过这些技术,可以高效利用计算资源,提高模型训练和推理的效率。原创 2025-08-06 11:47:26 · 48 阅读 · 0 评论 -
13、数据并行与模型并行的混合技术及联邦学习详解
本文详细介绍了深度学习中的数据并行与模型并行的混合技术,并以Megatron-LM和Mesh-TensorFlow为例探讨其实现方式和优缺点。同时,文章深入解析了联邦学习的基本概念、与传统数据并行的区别,以及其在边缘设备上的应用。通过TensorFlow Federated、TinyML和TensorFlow Lite的介绍,分析了联邦学习的部署和面临的挑战。最后,文章探讨了联邦学习的应用场景、潜在影响、未来发展趋势与挑战,旨在为读者提供全面的技术理解与实践指导。原创 2025-08-05 11:16:42 · 35 阅读 · 0 评论 -
12、提升深度学习模型并行训练与推理效率的技术探索
本文探讨了提升深度学习模型并行训练和推理效率的多种技术。内容涵盖利用系统内存和存储资源扩展GPU内存、模型分解与蒸馏以减少通信开销、降低硬件中的比特数以提升计算效率,以及结合数据并行与模型并行的混合方案。重点介绍了Megatron-LM和Mesh-TensorFlow两种系统的核心思想、实现方式及其优缺点,为开发者在不同应用场景下选择合适的技术方案提供了参考。原创 2025-08-04 12:42:27 · 35 阅读 · 0 评论 -
11、模型并行训练与服务:实现、优化与性能提升
本文详细介绍了深度学习中模型并行训练与服务的实现方法及性能优化策略。内容涵盖模型并行服务的具体代码实现、预训练Transformer模型(如BERT)的微调步骤、模型并行训练中的超参数调整技巧,以及NLP模型服务的应用流程。同时探讨了多种提升模型训练和推理效率的技术,包括冻结层操作、内存与存储资源的扩展使用、模型分解与蒸馏,以及降低比特表示的方法。通过掌握这些技术,可以有效提高模型训练和服务的系统性能。原创 2025-08-03 09:44:10 · 37 阅读 · 0 评论 -
10、模型并行训练与服务优化技术全解析
本文深入解析了模型并行训练与服务优化的关键技术,包括管道并行和层分割的实现原理及优缺点。通过具体示例和代码展示了如何在多GPU环境下实现模型并行训练和服务,同时探讨了性能优化策略,帮助读者高效利用计算资源提升训练和推理效率。原创 2025-08-02 14:15:52 · 26 阅读 · 0 评论 -
9、自然语言处理模型与硬件加速及并行训练效率优化
本文详细介绍了自然语言处理(NLP)领域的主流模型如BERT和GPT,探讨了它们的结构特点和训练方式。同时,文章分析了传统模型并行训练效率低下的问题,并提出了多种优化方法,如流水线并行、层内模型并行及其变体,以提高训练效率。此外,还介绍了用于训练NLP模型的先进硬件加速器,如NVIDIA的P100、V100和A100 GPU,并探讨了其在并行训练中的作用。原创 2025-08-01 14:50:26 · 35 阅读 · 0 评论 -
8、模型并行:解决大型NLP模型训练难题
本文探讨了模型并行在解决大型自然语言处理(NLP)模型训练难题中的应用。重点分析了单GPU训练时的内存问题及局限性,并介绍了NLP领域的典型模型,如RNN、ELMo、BERT和GPT。文章还给出了模型并行的具体实现方法和优化策略,以提高训练效率和资源利用率。原创 2025-07-31 11:55:45 · 64 阅读 · 0 评论 -
7、数据并行训练中的瓶颈与解决方案
本文探讨了数据并行训练中的两大主要瓶颈——通信瓶颈和设备内存瓶颈,并介绍了相应的解决方案。通信瓶颈部分分析了 Ring All-Reduce 的问题,并介绍了更高效的 Tree All-Reduce 协议;设备内存瓶颈部分则介绍了重新计算和量化两种优化方法。文章还从实际应用角度出发,总结了不同技术的优劣及适用场景,并展望了未来可能的技术发展趋势。原创 2025-07-30 14:29:12 · 34 阅读 · 0 评论 -
6、数据并行训练与服务:评估、调优及瓶颈解决
本文详细探讨了数据并行训练中的关键环节,包括模型评估、超参数调优和模型服务的实现方法,并深入分析了训练过程中面临的通信瓶颈和设备内存瓶颈。通过理论分析和代码示例,介绍了如何在多GPU环境下进行高效训练和推理。同时,针对通信和内存瓶颈,提出了多种解决方案,如利用空闲链路、优化通信协议、重计算和量化等技术。文章为提升数据并行训练的效率和性能提供了全面的指导思路,并展望了未来可能的研究方向。原创 2025-07-29 14:28:00 · 42 阅读 · 0 评论 -
5、数据并行训练:从基础到容错的全面指南
本博客详细介绍了数据并行训练的基础知识、硬件设置类型(单机器多GPU和多机器多GPU)以及检查点和容错机制。内容涵盖模型同步、优化器定义、模型更新、分布式训练实现步骤以及模型保存与加载策略,旨在帮助读者全面理解并实现高效的数据并行训练。原创 2025-07-28 15:50:39 · 45 阅读 · 0 评论 -
4、数据并行训练:从参数服务器到All-Reduce架构
本文详细介绍了深度学习中数据并行训练的两种主要范式:参数服务器和All-Reduce架构。重点分析了参数服务器架构的缺点,并阐述了All-Reduce架构如何解决这些问题。文章还详细描述了基于All-Reduce架构的数据并行训练管道的实现,包括输入预处理、数据分区、模型同步、参数更新等内容,并讨论了在单机器多GPU和多机器多GPU环境下的实现方式。最后,还涵盖了模型评估、超参数调优以及模型服务等关键步骤,为实现高效的分布式训练提供了全面的指导。原创 2025-07-27 13:48:12 · 68 阅读 · 0 评论 -
3、数据并行训练:参数服务器与All-Reduce范式解析
本文详细解析了数据并行训练中的两种主要范式:参数服务器与All-Reduce。文章介绍了不同通信方案的选择,参数服务器架构的工作原理及其通信瓶颈,以及All-Reduce范式如何解决这些问题。同时对比了两种范式的优缺点及适用场景,并通过代码示例展示了参数服务器的实现方式。最后,文章总结了集体通信在分布式深度学习中的重要性。原创 2025-07-26 10:26:31 · 55 阅读 · 0 评论 -
2、数据并行训练:加速机器学习模型训练的有效策略
本文探讨了数据并行训练作为加速机器学习模型训练的有效策略。文章首先分析了单节点训练的瓶颈,指出数据加载带宽和模型训练带宽不匹配的问题,随后详细介绍了数据并行训练的工作原理及其在大规模数据集和复杂模型中的应用优势。同时,深入解析了随机梯度下降(SGD)和模型同步机制,并讨论了超参数调优对训练效果的影响。最后,文章总结了数据并行训练的挑战与解决方案,强调其在现代机器学习中的重要性和广泛应用前景。原创 2025-07-25 12:14:31 · 57 阅读 · 0 评论 -
1、分布式机器学习:Python 加速模型训练与服务
本文介绍了分布式机器学习的核心概念和关键技术,包括数据并行性和模型并行性的原理及实现方法,详细探讨了参数服务器架构、All-Reduce架构、通信瓶颈的解决方案等内容。同时,文章还涉及联邦学习、边缘设备推理、弹性模型训练等前沿主题,旨在帮助读者提升模型训练和服务的效率与性能。原创 2025-07-24 09:09:45 · 46 阅读 · 0 评论
分享