MR模型的介绍以及模型实例

当谈到大数据处理和机器学习时,MR(MapReduce)模型被广泛应用。MR模型是由 Google 所提出的一种基于多台机器的分布式计算框架,被广泛应用于大规模数据处理,特别是用于计算/搜索引擎中的数据索引和统计。在本文中,我们将学习如何使用MR模型编程。

MR模型核心思想:将任务分解成不同子任务,每个子任务在不同的节点上独立进行处理,最后将处理结果收集在一起,即可得到最终的结果。

首先,你需要在MR模型中实现两个核心函数:map函数和reduce函数。

map函数

map函数的作用是将初始数据集区分为一个或多个键值对。具体的,对于每个输入数据元组,map函数将生成一个或多个中间键值对。具体来说,例如我们要统计一篇文章中单词出现的频率,我们可以将文章划分为若干个段落,然后每个段落交给一个map函数进行处理。map函数会将每个单词作为键,出现的次数作为值,生成若干个键值对,作为中间结果输出。所以,map函数的输入为(键, 值)元组,输出为(中间键, 中间值)元组。

reduce函数

reduce函数的作用是合并中间键值对。具体的,同样以单词频率统计为例,reduce函数将接受中间键值对作为其输入,并输出由键和与各个值相关联的值列表组成的(键, 值列表)元组。值的列表是中间结果的合并结果,可能由多个map函数产生。最后再对每个键的值列表进行计算,得到最终结果。

那么,我们该如何实现这两个函数呢?一种实现方式是使用Hadoop框架,它提供了MR编程模型的高层抽象,封装了底层的流程,并提供了一组Java API使得我们可以方便地实现中间键值对的传递和任务调度。

在Hadoop中编写一个MR程序需要实现Mapper和Reducer两个类。在Mapper类中,我们需要覆盖map方法;在Reducer类中,我们需要覆盖reduce方法。另外,我们还要定义数据的输入和输出格式。

这里是一个基本的MR模型示例,用于统计文本文件中单词的出现次数:

java:
public class WordCount {

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{ // 定义输入输出的键和值的类型

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException { //实现Map函数
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> { // 定义输入输出的键和值的类型

    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException { //实现Reduce函数
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration(); // 创建Hadoop配置实例
    Job job = Job.getInstance(conf, "word count"); // 创建MapReduce作业实例

    job.setJarByClass(WordCount.class); // 设置job类
    job.setMapperClass(TokenizerMapper.class); // 设置Map类
    job.setCombinerClass(IntSumReducer.class); // 设置合并类
    job.setReducer

Class(IntSumReducer.class); // 设置Reduce类

    job.setOutputKeyClass(Text.class); // 设置输出键的类型
    job.setOutputValueClass(IntWritable.class); // 设置输出值的类型

    FileInputFormat.addInputPath(job, new Path(args[0])); // 设置输入路径
    FileOutputFormat.setOutputPath(job, new Path(args[1])); // 设置输出路径

    System.exit(job.waitForCompletion(true) ? 0 : 1); // 提交作业并等待完成
  }
}
```

在上述代码中,我们首先定义了TokenizerMapper和IntSumReducer这两个类,分别实现了Mapper和Reducer类。其中,TokenizerMapper类中的map方法将文本文件中的单词切分,然后生成每个单词的中间键值对;而IntSumReducer类中的reduce方法将相同单词的数量相加,并将结果输出为键值对。

接下来,我们通过Job类将这两个类组合起来,并对输入输出键值对类型进行设置,同时,通过addInputPath和setOutputPath方法,设置输入输出的路径。最后,我们使用System.exit方法,提交作业并等待完成。

总结下来,通过上述代码,我们可以看出MR模型的编程模式很清晰简洁,通过定义Map和Reduce函数,将任务拆分并在不同的节点上并行处理,最后将结果进行合并得到最终结果。MR模型的优点是可以在大数据处理时提高数据处理速度,同时也能够处理由多个计算节点和需要处理的任务组成的复杂问题。

值得一提的是,除了使用Hadoop框架实现MR模型编程外,还有一些其他的开源框架,如Apache Spark和Apache Flink,它们提供了更高级别的API和更高效的作业调度和数据处理引擎。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值