Oracle查询优化第二方面:多表查询的优化
在进行多表联合查询时,数据库可能会采取MERGEJOINS、NESTED LOOP、HASH JOIN。其中,不论什么时候哈希联结要比另两种联结开销要小。
我们可以使用哈希联结代替MERGEJOINS、NESTED LOOP联结、因此,在应用中,可添加一些设置使得数据库在有多大联合查询发生时使用哈希联结。其方法是:以 oracle用户身份登录数据库服务器,在initosid.ora文件中添加:
HASH_JOIN_ENABLED=TRUE
HASJ_AREA_SIZE=26000
修改完后,重新启动数据库,使这些参数值生效。
Oracle查询优化第三方面:大表查询优化
数据库中有些表是增长非常快的,记录量很大,对这种表进行访问时,索引的好处就微乎其微了,通常采用两种办法来进行大表访问的优化。
1)大表建立在哈希簇中
create cluster TRADE_CLUSTER(vuserid integer)
storage(initial 50M next 50M)
hash is vuserid
size 60 hashkeys 10000000;/*hashkeys指定了在哈希表里的所期望的行数。*/ create table
trade_detail_new as select * from trade_detail cluster
TRADE_CLUSTER(userid);
drop table trade_detail;
rename trade_detail_new to trade_detail;
2)建分区表
将一个大表分开放置在几个逻辑分区中或者是将一个大表分成了几张小表 ,即可以单独对这些小表进行查询,也可以union all一起查询。
例如:将 一个记录交易详情的表拆分:
create trade_detail_1 as select * from trade_detail
where trade_time between to_date('mm-dd','01-01')and to_date('mm-dd','03-31');
alter table trade_detail_1 add constraint check_trade_detail_1
check (trade_time between to_date('mm-dd','01-01')and to_date('mm-dd','03-31'));
同样,建立起另几张按交易发生的季度而划分的表。然后创建执行四个表联合的视图;
create view trade_detail as select * from trade_detail_1
union all select * from trade_detail_2
union all select * from trade_detail_3
union all select * from trade_detail_4;
这样在查询某段时间内的数据时只访问小表就可以了,需要时也可进行联合查询。
Oracle查询优化第四方面:SQL优化
应用程序的执行最终将归结为数据库中的SQL语句执行,SQL语句消耗了70%到90%的数据库资源。因此SQL语句的执行效率最终决定了ORACLE数据库的性能。许多程序员认为查询优化是DBMS(数据库管理系统)的任务,与程序员所编写的SQL语句关系不大,这是错误的。一个好的查询计划往往可以使程序性能提高数十倍。另外,SQL语句独立于程序设计逻辑,相对于对程序源代码的优化,对SQL语句的优化在时间成本和风险上的代价都很低。
SQL优化的主要途径是:
a.有效索引的建立。在经常进行连接,但是没有指定为外键的列上建立索引;在频繁进行排序或分组(即进行group by 或 order by 操作)的列上建立索引;在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引;如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。
为了降低I/O竟争, 索引要建在与用户表空间不在同一磁盘上的索引空间里。索引分为:分区索引、完全索引、唯一索引、位图索引等几种类型,在建立索引前,应该测量这个索引的选择性,索引的选择性是指索引列里不同值的数目与表中记录数的比。
b.在有大量重复值并且经常有范围查询(例如 between,>,<>=,<=)的列,或是用到order by、group by的列,可考虑建立群集索引 ;
c.要经常同时存取多列,目每列都含有重复值可考虑建立组合索引
d.优化表达式,在能使用范围查询时尽可能使用范围索引, 而少用“like”,因为“LIKE”关键字支持的通配符匹配特别耗费时间。
f.使用Oracle语句优化器(oracle optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。