区块链技术是否会终结开源时代

作者:庄表伟

转载自:简书

本期编辑:采薇在云间

区块链技术是否会终结开源时代?

写在前面的话


2017年11月18、19日两天,大家相聚在上海交大,召开并参与了2017中国开源年会。与会期间,我们还有个 “闭门会议” 进行讨论。当然,在这个闭门会议上,区块链也是大家热聊的一个话题。会上,我颇为随性的发表了一些“歪理邪说”。


参加此次大会的朋友当中,有一位来自 Linux 人的陈欧侃,他打算筹划一个在线的、与开源话题相关的、面向大学生的辩论会。同时也邀请我去做主持人,更是将我的观点,设立成为一个辩题《区块链技术是否会终结开源时代?》

正方

反方

VS

作为这个话题的始作俑者,我想也有义务将自己当初的观点,以更加书面的形式阐述一下。一方面,是想看看是否能够找到认同这一观点的朋友,另一方面也想分享给参加辩论的正反双方同学,做一个小小的参考。

 区块链的技术本质

在我看来,现在大家经常提及的“价值互联网”,是对区块链技术最中肯的评价。传统的互联网,是传输信息的。所以,信息的复制与传播非常容易,却无法简单的做到:我给了你N,我自己就会少掉N,这样的需求。

区块链的思路,恰恰巧妙的解决了这个问题:将A转给B一共N元这个信息,复制无数份,全网分发。于是每个人都知道了这笔交易,只要回溯了与A相关的所有交易,就能知道A的账户里,还剩下多少钱了。

其次是智能合约,当某某事件发生,就能够自动的触发一笔交易。虽然这并不是全新的技术,但是与价值传递关联起来,再加上去中心化、不可篡改等等特性,改变世界的可能性,就此出现了!

640

  开源时代的来历

为什么会出现开源时代?其实,如果往前追溯,还是因为比尔盖茨写的那封著名的《致电脑爱好者的公开信》。在那封信里,比尔盖茨谈到了一个非常合理的观点:"我不应该无偿为你劳动!我写了程序,那是我的劳动成果。如果你想要复制给自己的朋友,而不是推荐他到我这里来购买,那就是偷了我的钱,然后拿去送人。"

注意,下面开始是歪理邪说

640

由于互联网的出现,盗版的传播变得比以前更加容易!因此,一个软件作者、或软件公司的权益,更加难以得到保障。事实上,除非你能够拥有强大的律师团队,并能够通过打击盗版,将钱赚回来。否则大多数开发者,是无法独立的维护自己的权利的。

接下来的事情,产生了一个神奇的变化。程序员们反其道而行之,索性将软件的源代码,完全开放出来了。不但不再介意他人的修改与二次分发,更是在开源的基础上,发展出了一整套推崇道德的评判标准、强调奉献的社区文化、与公开透明的协作模式。

于是,开源时代,到来了

程序员的现在

现在的程序员,基本上有两种选择:

  • 投身某家软件企业,出卖自己的智慧,并换取“稳定”的收入。(创业其实也就是希望能够将收入最大化的一种高风险行为)

  • 创造某种开源软件,并且几乎不必指望任何直接的经济回报。(社区地位提高,被人收购与投资,当然也是存在一些微小可能的)‍

 

但是,这样的现状,其实都是不公平的。作为一个程序员,他写了一个程序,或者一个程序中的某个模块。这样的一种劳动,究竟意味着多大的价值?

在公司里拿着月薪或年薪,与他的软件的价值究竟有多大,其实关系并不大。假设一个互联网公司,程序员开发了一个网站,第一年用户来了100万,第二年用户来了1000万,程序员的工资并不会增长10倍。

至于开源软件,那就更加不公平了。PHP 语言编写的网站,在全球80%的服务器上运行,PHP 语言的作者,应该获得多大的收入?Apache 的作者呢?Linux 的作者呢?为了支撑整个互联网的存在,Bind 的作者又应该收入多少?因为无法计算,所以~~他们就奉献了。这样真的公平吗?

程序员的未来

如果程序员的未来,能够根据他的软件,究竟被多少人使用,每天被多少次运行,来获得收入,将会发生什么呢?


我们在开源社区,都存在 patch 贡献的概念。


假设我们可以统计一个软件的全部 patch 数量,一共有3千个开发者为一款软件贡献过 patch。根据贡献比例,最多的人,贡献了10%patch,最少的人,只有千分之0.2


然后,如果这个软件,每运行一次,就能够收取0.0001元。在全球运行1万次,能够收到1元钱。但是这个软件,实在是太出色了,它在全球每天会运行1亿次,因此,那位贡献了10%的 patch 作者,每天能够自动收到1千元。而那位贡献最少的人,也能收到2元钱。


3千位程序员,自动的组成了一家没有主管的公司。他们的收入,来自于他们的软件执行后产生的收益。这一切,都是通过智能合约,自动执行的!


开源时代的终结

640

事实上,并非开源的终结,而是开源=奉献=没钱,这样一个时代的终结。甚至更加极端一些,没有所谓的软件公司,也没有所谓的开源项目。所有的软件都是开源的,所有的软件也都是赚钱的,至于那种以道德相标榜的“开源时代”,终结就终结了吧!

640

你觉得这篇文章的观点有意思吗?欢迎留下你的足迹和想法哦,也欢迎在留言区与作者交流。

640

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值