正交频分复用(OFDM)入门

OFDM的存在意义##

水声信道是复杂多变的,时变,空变,加上严重的多径效应,使得信道的冲激响应表现为时延的扩展和频率的选择性等特点(无线通信中也有类似场景)。那么这种信道对通信信号的具体表现为较强的码间干扰(ISI)。所谓码间干扰就是某一时刻的符号受到了其他符号的干扰或影响。为什么会产生这种现象呢?从频域的角度来看很好理解,我们先假设信道是一个理想的信道,即其幅度为一个常数,相位线性变化,那么当信号通过信道时,不会发生畸变,发送的符号(波形)与接收的符号(波形)是一样的(假设已经完成同步),这时接收端只需判决解码就OK了;现实中理想的信道时不存在的,所以信道的频率响应必然会发生改变(相比理想的来说),幅度会有起伏,相位也可能非线性变化,那么在时域信号就会发生畸变,最明显的就是时延的扩展,最终导致不同符号间就会产生串扰。对多径信道来说这种现象更为严重,从时域的冲激响应来看也很直观。
  对传统的单载波传输系统,为了克服ISI对通信效果的影响,发射端一般会根据奈奎斯特准则设计整形脉冲 g ( t ) g(t) g(t),接收端则采用信道估计及均衡技术(今后会单独解释这两部分)来消除ISI,再结合纠错码(信道编码)实现可靠的通信。
  OFDM,正交频分复用,是一种多载波传输系统。相比单载波,它可以有效地克服ISI,提高频带的利用率,实现高速通信。

OFDM如何克服ISI?##

OFDM,正交频分复用,Orthogonal Frequency Division Multiplexing,我们顾名思义,所谓频分复用就是将频带分成多个子带来利用,与此对应还有时分复用,码分复用。下边我用几个简单的公式来说明。
  OFDM是一种多载波调制方式, 多个载波等分频带,我们设频带宽度为 B B B,载波个数为 K K K,那么每个子载波的带宽是 Δ f = B / K \Delta f=B/K Δf=B/K,中心频率为 f c f_c fc,那么每个子载波频率为
   f k = f c + k Δ f , k = − K 2 , ⋯   , K 2 − 1 f_k=f_c+k\Delta f, k=-\frac K2,\cdots,\frac K2 -1 fk=fc+kΔfk=2K,,2K1
在时域来看,发射脉冲(脉冲整形函数)通常是一个矩形脉冲,众所周知,矩形脉冲的傅里叶变换为 s i n c \mathrm{sinc} sinc函数, 带宽与脉宽互为倒数。如果我们采取单载波传输,那么符号间隔(传输时间)就为 T s = 1 / B T_s=1/B Ts=1/B。如果采取OFDM多载波传输方式,每个载波占用带宽为 Δ f \Delta f Δf, 符号间隔为 T m = 1 / Δ f = K T S T_m=1/\Delta f =KT_S Tm=1/Δf=KTS,因为每一个子载波在时域的持续时间都为 T m T_m Tm,所以可以实现 K K K个符号的并行传输。相比单载波,每个符号的传输扩大了 K K K倍(假设载波调制方式和阶数均相同,如都为QPSK或16QAM调制),但是传输的信息量也扩大了 K K K倍,频带的利用率也大大增加了。
  那么OFDM是 如何克服ISI的呢,我们做进一步分析。考虑单载波传输,我们假设信道引起码间干扰的长度是10,怎么理解呢?从接收端来看,就是当前时刻接收的码元与之前的10个码元都有关。上面我们提到,码间干扰是由信道的扩展和畸变引起的,接收到的信号是发射信号与信道冲激响应的线性卷积,由信号与系统的知识,两个长度为 L L L m m m的序列卷积得到的序列长度为 L + m − 1 L+m-1 L+m1。那么,如果发送信号的码元间隔为 T s T_s Ts,信道的时延扩展有 10 T s 10T_s 10Ts。在这种条件下,若采用OFDM传输,OFDM的符号间隔为 T m = K T s T_m=KT_s Tm=KTs,通常 K K K的取值,即子载波个数可以达到几百甚至上千(在水声通信中)。我们假设 K = 512 K=512 K=512,那么由信道引起的这10个码元长度的扩展 10 T s 10T_s 10Ts相比 512 T s 512T_s 512Ts的符号间隔,比例只有 10 / 512 ≈ 0.02 10/512\approx0.02 10/5120.02,可以说OFDM对ISI的容限,或者说容忍度比较大,这大大克服了ISI的影响,这也是为什么OFDM可以抗多径的主要原因。
  上面主要是从时域去考虑的,我们从频域去考虑。多径信道通常是一种快衰落的频率选择性(就是频域的衰落程度与频率有关,不同的频率衰落程度不同)信道,可以去MATLAB中做一个频谱分析就看出来了。想象一下微积分原理,任何一条曲线,只要分割的足够小,都可以看作直线,甚至是水平的。带宽为 B B B的频带,想象它是杂乱无章的,波动很大,现在我们把它拆分成 K K K个子带,那么在每一个子带中,频率响应可以看作是缓慢变化的,也就是平坦衰落(是否平坦和信道的相干带宽有关,感兴趣可以深入了解),更极端一点,可以当做理想的,所以每一个子载波经过信道对应的子带时都不会发生太大的变化,也就实现了无ISI的传输。

OFDM的弱点

任何技术都是两面的,有优势必然也有劣势,而我们的任务一直是在多种技术的优势和劣势中去做平衡。在上一小节我其实只粗略的介绍了OFDM的频分复用特点,并没有说它的正交性。正交是OFDM的大前提,是OFDM中的O。
  上一节我们提到,每一个子载波在时域的宽度为 T m = K T s T_m=KT_s Tm=KTs,发送的脉冲(整形脉冲)是矩形脉冲,它在频域的表现为 s i n c \mathrm{sinc} sinc函数,所以 K K K个子载波在频域一共应有 K K K个形如 s i n c \mathrm{sinc} sinc函数的子带共同构成一个带宽为 B B B的频带。这里注意一点,因为时域是有限长的,所以这 K K K个子带在频域是无限长的,那么如何分布才能让这 K K K个子带对应的 K K K个子载波互不干扰呢,自然而然就是让他们正交。原理类似于奈奎斯特准则,让每个子带的峰值对应于各自子载波频率 f k f_k fk,在 f k f_k fk处,其他子带对应的 s i n c \mathrm{sinc} sinc函数值为0,即可满足正交性。
  很容易想象,当信道时变并在频域产生多普勒扩展时,这种正交性很容易被打破,若整个频带发生的载波频率偏移(CFO)一致,正交性依然满足,但通常各个频点的偏移是不同的,正交性一旦被打破,就会产生子载波间的干扰,所以一般在接收端还会对信道及其多普勒进行估计和补偿。
  除此之外, K K K个子载波在同一个时域间隔内并行传输,当多个子载波在某个位置相位相同时,会导致时域信号的幅值突然增高,引起较高的峰均比,导致发射机限幅,导致信号失真。


近来比较忙,仓促之中完成,主要面向的对象是帮助入门级选手理解框架,因为博主也是接触相关内容不久,多有不足之处,请大家指正。

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页