01
为什么大模型上线需要做推理优化?
面试官心理分析
面试官问这个问题,其实主要是想看两点:
第一,你知不知道产品级大模型系统里为什么要用推理优化这个东西?
不少候选人,说自己项目里用了推理优化技术,但是其实他并不知道自己为什么要用这个东西。说白了就是为了用而用,或者看别人用他也用,从头到尾都没思考过。
没有对自己的设计问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通常很不好。因为面试官担心你进了团队之后只会木头木脑的干呆活儿,没有自己的思考。
第二,你既然用了推理优化这个东西,你知不知道用了有什么好处,同时又有什么坏处?你当时做没做过调研,为什么要用它?
你要是没考虑过这个,那你盲目弄个 INT8 量化或者 INT4 量化进系统里,后面出了问题是不是就自己溜了给公司埋雷?
你别傻乎乎的自己拍脑袋看个人喜好就瞎用一个量化技术,甚至都从没调研过业界流行的低比特量化技术到底有哪几种?每一个量化技术的优点和缺点是什么?是量化权重还是量化激活,效率如何?是不是精度无损的?
如果一个不考虑技术选型的候选人招进了大模型团队,leader 交给他一个任务,去做一个大模型业务,他在里面用一些技术,可能都没考虑过选型,随便拿来一段现成的代码就用,最后选的技术方案并不一定合适,一样是埋雷。
回到问题,对于对于真实场景的面试题,一定不是你说得越多越好,面试时间本身有限,废话太多,面试官完全没有耐心听下去。重点是要答到点上,如果答的牛头不对马嘴,一样是 0 分。
因此对于第一个问题,面试官期望的一个优秀回答是要包含如下两个关键点:
-
计算耗时——推理时延太长,造成用户体验差,甚至不能满足延迟需求
-
Memory 问题——模型参数量多,耗费显存,甚至单张 GPU 卡放不下
上面两个问题,其实可以总结为大模型领域两个技术名词,“计算墙”和“内存墙”,如果你能说到这两个重要的技术名词,面试官对你的印象分可能又会多加 2 分。
因此,针对这两堵“墙”,大模型上线推理优化的目标就是:
-
缩短推理延迟,追求极致的用户体验
-
减少 GPU 显存占用,降低部署成本
这个问题回答到此就可以了,做到回答简洁,包含所有要点,没有一句废话。
02
常见的大模型推理优化技术有哪些,各有什么特点?
面试官心理分析
如果第一个问题你回答上了,面试官大概率会继续追问这一个问题。
它其实是想看你是不是真的了解大模型推理优化的技术细节,面试官期望的优秀回答,是你能回答上目前常见的优化技术。
推理优化总体可以归纳为 6 个类,分别是:
-
分布式优化
-
低比特量化
-
算子优化
-
访存优化
-
服务并发优化
-
其他新技术
如果你能答上这 6 类技术的其中 4 类以上,并说出每类技术的特点,其实面试基础分就拿到了。
例如:
-
分布式优化重点是通信层面的优化
-
低比特量化目的是降低显存占用
-
算子优化是提升 CUDA 算子的计算效率
-
访存优化是减少 GPU 对 HBM 的访问以及提高显存利用率
但是如果你能更进一步,把回答的每一类的优化列举几个典型技术,那就成功拿到了超出面试官预期的附加分。
例如:
-
分布式优化里的张量并行,流水线并行,NCCL 通信优化
-
低比特量化有 INT4/INT8 权重量化,AWQ 自适应量化,KV Cache 量化
-
显存优化中的 Paged Attention,FlashAttention
-
算子优化中有算子融合,GEMM 高性能算子
-
服务优化有 Continous Batching,Dynamic Batching,Async Serving

到此的回答已经让面试官满意了,但是如果面试官再追问一句,有没有了解过其他最新的优化技术?
这个时候就是考验功力的时候了,面试官这样问,其实是想探测一下你的能力边界,同时考察下你是不是经常看最新的论文和算法技术。
此时,面试官最期望的回答是,你能回答上最近几个月最新论文里提出的优化技术。
例如:投机采样(Speculative Decoding),美杜莎头(Medusa Heads),Lookahead Decoding,EAGLE等最新的算法,并且再选其中一个算法简述一下其中的核心思想。
我们以 Medusa Heads 算法为例,如果你能在面试现场画出下面这张图,并且告诉面试官,Medusa 的核心在于它在 LLM 的最后隐藏层上增加的多个 Heads,使它们并行工作,预测接下来的内容。
通过同时接受更多的 tokens 来增强解码过程的效率,从而减少了所需的解码步骤数量。相比于投机采样,它不需要一个额外的小模型,缺点是需要修改模型的训练代码。

到此,这个面试问题就属于满分回答了。
那么,如何系统的去学习大模型LLM?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈
💥大模型入门要点,扫盲必看!

💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
路线图很大就不一一展示了 (文末领取)

👉大模型入门实战训练👈
💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉国内企业大模型落地应用案例👈
💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)

👉GitHub海量高星开源项目👈
💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!

👉LLM大模型学习视频👈
💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)

👉640份大模型行业报告(持续更新)👈
💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓


7630

被折叠的 条评论
为什么被折叠?



