Gradle第十章:Web应用快速入门

本文介绍如何使用Gradle的War插件打包WAR文件,以及利用Jetty插件启动和部署Web应用。通过简单的配置步骤,实现项目的快速构建与测试。

本章介绍了Gradle对Web工程的相关支持。Gradle为Web开发提供了两个主要插件,War plugin 和 Jetty plugin。 其中War plugin继承自Java plugin,可以用来打war包。jetty plugin继承自War plugin作为工程部署的容器.
This chapter introduces some of the Gradle's support for web applications. Gradle provides two plugins for web application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to build a WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web application to an embedded Jetty web container.

10.1. 打War包

10.1. Building a WAR file

需要打包War文件,需要在脚本中使用War plugin:
To build a WAR file, you apply the War plugin to your project:

例 10.1. War plugin
Example 10.1. War plugin

build.gradle

apply plugin: 'war'

备注: 本示例代码可以在Gradle发行包中的 samples/webApplication/quickstart 路径下找到
Note: The code for this example can be found at samples/webApplication/quickstart which is in both the binary and source distributions of Gradle.

由于继承自Java插件,当你执行 gradle build时,将会编译、测试、打包你的工程. Gradle会在 src/main/webapp下寻找Web工程文件.编译后的classes文件以及运行时依赖也都会被包含在War包中.
This also applies the Java plugin to your project. Running gradle build will compile, test and WAR your project. Gradle will look for the source files to include in the WAR file in src/main/webapp . Your compiled classes, and their runtime dependencies are also included in the WAR file.

Groovy web构建

Groovy web applications

在一个工程中你可以采用多个插件.比如你可以在web工程中同时使用War plugin和Groovy plugin. 插件会将Gradle依赖添加到你的War包中.
You can combine multiple plugins in a single project, so you can use the War and Groovy plugins together to build a Groovy based web application. The appropriate groovy libraries will be added to the WAR file for you.

10.2. Web工程启动

10.2. Running your web application

要启动Web工程,只需使用Jetty plugin即可:

To run your web application, you apply the Jetty plugin to your project:

例 10.2. 采用Jetty plugin启动web工程
Example 10.2. Running web application with Jetty plugin

build.gradle

apply plugin: 'jetty'

由于Jetty plugin继承自War plugin.调用gradle jettyRun 将会把你的工程启动部署到jetty容器中. 调用gradle jettyRunWar会打包并启动部署到jetty容器中.
This also applies the War plugin to your project. Running gradle jettyRun will run your web application in an embedded Jetty web container. Running gradle jettyRunWar will build the WAR file, and then run it in an embedded web container.

待添加:使用哪个URL,配置端口,使用源文件的 地方,可编辑你的文件,以及重新加载的内容。
TODO: which url, configure port, uses source files in place and can edit your files and reload.

10.3. 本章汇总

10.3. Summary

了解更多关于War plugin和Jetty plugin的应用请参阅第 26 章, War Plugin以及 第 28 章, Jetty Plugin . 你可以在发行包的samples/webApplication下找到更多示例.
You can find out more about the War plugin in Chapter 26, The War Plugin and the Jetty plugin in Chapter 28, The Jetty Plugin . You can find more sample Java projects in the samples/webApplication directory in the Gradle distribution.

【源码免费下载链接】:https://renmaiwang.cn/s/2gdnj 《R语言数据挖掘方法及应用》由薛薇编写而成的一本系统阐述R语言在数据挖掘领域前沿技术的著作。该书旨在指导读者学会使用R语言进行高效、实用的数据分析与建模工作,涵盖了从理论基础到实践操作的全过程。作为一款功能强大且开源的统计计算和图形处理平台,R语言凭借其丰富的工具库和社区支持,在数据分析与可视化方面展现出显著优势。在数据挖掘领域,R语言提供了包括`caret`、`randomForest`、`tm`、`e1071`等广泛使用的专用包,这些工具能够帮助用户更便捷地进行数据预处理、特征选择、模型构建和结果评估。全书首先介绍R语言的基本知识体系,涵盖环境配置与安装方法、基础语法规范以及常见数据类型分析等内容。这些基础知识是开展后续数据分析工作的必备技能,通过学习可以快速掌握R语言的核心功能。随后章节深入讲解了数据挖掘的主要概念与流程,包括数据清洗、转换整理和探索性分析等环节,同时详细阐述了分类、聚类、关联规则挖掘及预测等多种典型任务的具体实施方法。这些内容有助于读者全面理解数据挖掘的整体架构及其核心工作步骤。在应用实践部分,薛薇老师结合真实案例展示了R语言在实际业务场景中的具体运用,例如市场细分分析、客户流失预测以及个性化推荐系统等。通过这些案例研究,读者可以深入学习如何利用相关工具包解决实际问题,并提升数据分析能力。此外,书中配套的“案例数据集”和“代码资源”为读者提供了实践操作的机会,使理论知识能够更好地转化为动手技能。通过实际操作分析,读者可以加深对R语言数据挖掘方法的理解并灵活运用。总之,《R语言数据挖掘方法及应用》是一部全面讲解R语言在数据分析与建模领域的教材,无论你是刚开始学习的新人还是经验丰富的专业人士,都能从中获益匪浅。通过深入研读此书,你可以掌握R语言的数据挖掘技巧,并将其应用到实
内容概要:本文提出了一种基于改进粒子滤波算法的无人机三维航迹预测方法,并通过Matlab代码实现仿真验证。该方法针对传统粒子滤波在无人机轨迹预测中存在的粒子退化和计算复杂度高等问题,引入优化策略提升滤波精度与效率,有效提高了对无人机运动轨迹的非线性、非高斯环境下的预测能力。文中详细阐述了算法原理、模型构建流程及关键步骤,包括状态转移建模、观测方程设计、重采样优化等,并结合三维空间中的实际飞行轨迹进行仿真实验,验证了所提方法相较于标准粒子滤波在位置预测误差和收敛速度方面的优越性。; 适合人群:具备一定信号处理、导航估计算法基础,熟悉Matlab编程,从事无人系统、智能交通、航空航天等相关领域研究的研究生或科研人员; 使用场景及目标:①应用于无人机实时轨迹预测与状态估计系统中,提升飞行安全性与自主性;②为复杂环境下非线性动态系统的建模与滤波算法研究提供技术参考;③【预测】改进粒子滤波的无人机三维航迹预测方法(Matlab代码实现)支持后续扩展至多无人机协同跟踪与避障系统的设计与仿真; 阅读建议:建议结合Matlab代码逐模块分析算法实现细节,重点关注粒子滤波的改进机制与三维可视化结果对比,同时可尝试替换不同运动模型或噪声条件以深入理解算法鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值