Java HashMap 分析之三:放入元素

现在,有了hash code,来考虑如何计算放入数组的位置。hash code值通常会很大,但是数组的大小有限,默认只有16,大的也不能超过2的30次方。所以,用模运算来保证在数组大小范围内是合理的,比如:index = hash code % array size.不过这有点慢,JDK采用了更快的算法。这个更快的算法源于一个数学规律,就是如果size是2的N次方,那么数X对size的模运算结果等价于X和size-1的按位与运算,也就是 X % size <=> X & (size -1).按位与只消耗一个CPU周期,当然快多了。现在就可理解为什么要故意把数组大小弄成2的N次方了。再回头看一开始计算数组大小的代码,完全理解了。

  1. int capacity = 1;
  2. while (capacity < initialCapacity)
  3. capacity <<= 1;
int capacity = 1;
while (capacity < initialCapacity)
      capacity <<= 1;

比如size=16,二进制表示如下:(32位)
0000000000000000000000000010000
size-1=15,表示如下:
0000000000000000000000000001111

假如hash code=4
0000000000000000000000000000100
4 & 15 结果为:
0000000000000000000000000000100

假如hash code=6
0000000000000000000000000000101
6 & 15 结果为:
0000000000000000000000000000101

假如hash code=38
0000000000000000000000000100110
38 & 15 结果为:
0000000000000000000000000000110

通过观察这三个例子,又可以发现一个特点,也就是X & size-1 的结果受到了size的阶数的限制,这里size=16,阶数为4.结果就是只用低4位的1和X按位与,而X的高位没有用到。这会导致重复率相当高。如果用一个算法将X的低位重新计算,比如根据所有位的值进行重新计算,就可以使得hash值分布更均匀。下面的代码揭示了在真正按位与之前,调用了hash函数,进行了一堆位运算。至于为什么用这个算法,我也不知道其来历。不过这里一篇帖子演示了这个hash函数会导致bit的随机性,可以作为理解的开始。

http://stackoverflow.com/questions/9335169/understanding-strange-java-hash-function

  1. public V put(K key, V value) {
  2. if (key == null)
  3. return putForNullKey(value);
  4. int hash = hash(key.hashCode());
  5. int i = indexFor(hash, table.length);
  6. for (Entry<K,V> e = table[i]; e != null; e = e.next) {
  7. Object k;
  8. if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
  9. V oldValue = e.value;
  10. e.value = value;
  11. e.recordAccess(this);
  12. return oldValue;
  13. }
  14. }
  15. modCount++;
  16. addEntry(hash, key, value, i);
  17. return null;
  18. }
  19. static int hash(int h) {
  20. // This function ensures that hashCodes that differ only by
  21. // constant multiples at each bit position have a bounded
  22. // number of collisions (approximately 8 at default load factor).
  23. h ^= (h >>> 20) ^ (h >>> 12);
  24. return h ^ (h >>> 7) ^ (h >>> 4);
  25. }
  26. static int indexFor(int h, int length) {
  27. return h & (length-1);
  28. }
  29. void addEntry(int hash, K key, V value, int bucketIndex) {
  30. Entry<K,V> e = table[bucketIndex];
  31. table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
  32. if (size++ >= threshold)
  33. resize(2 * table.length);
  34. }
public V put(K key, V value) {
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }

    static int hash(int h) {
        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    static int indexFor(int h, int length) {
        return h & (length-1);
    }

    void addEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
        if (size++ >= threshold)
            resize(2 * table.length);
    }

上面的for循环是查找并替换符合条件的对象,如果找不到,则添加新的对象。查找到的条件(必须都满足)是:
1.hash值相等
2.key的引用相同或者key的值相等。
发布了5 篇原创文章 · 获赞 0 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览