LangGraph深度解析:构建持久化、可观测的智能体工作流

一、项目概述与技术定位

1.1 LangGraph核心价值

LangGraph是由LangChain团队推出的开源框架(GitHub仓库:https://github.com/langchain-ai/langgraph),专为构建持久化、状态化的智能体工作流设计。作为LangChain生态系统的战略补充,它解决了传统LLM应用在以下方面的关键痛点:

  • 持久化执行:支持长时间运行(数小时/天级)的工作流,故障后自动从检查点恢复
  • 全链路可观测:与LangSmith深度集成,提供执行路径可视化、状态追踪等调试能力
  • 灵活状态管理:支持短期工作记忆(推理上下文)与长期持久化存储(会话历史)
  • 人机协同:支持在任意执行阶段进行人工干预和状态修改

1.2 设计哲学与技术传承

LangGraph融合了多个分布式系统设计理念:

  • Pregel模型:继承自Google的BSP(Bulk Synchronous Parallel)计算模型,采用消息传递机制
  • 有向无环图:将工作流抽象为节点(操作)和边(控制流)组成的执行图
  • Actor模型:通过状态隔离和消息传递实现并发安全
基于大模型智能体AgentLangGraph入门与实战课程目标:本课程旨在为LangGraph的初学者提供深入的理论知识和实践技能,使其能够独立构建和部署基于LangGraph的应用程序。课程形式:理论讲解 + 实战演练第1课 LangGraph基础架构与环境配置-LangGraph的概念解析第2课 LangGraph基础架构与环境配置-LangGraph的环境搭建与依赖管理第3课 LangGraph的基础原理与应用入门-构建基本聊天机器人及使用工具增强第4课 LangGraph的基础原理与应用入门-内存管理、人在回路、状态更新第5课 LangGraph高级图控制技术-并行节点扇出和扇入、增加额外步骤、条件分支第6课 LangGraph高级图控制技术-稳定排序、Map-Reduce并行执行、图递归控制第7课 LangGraph持久化机制与状态管理-线程级持久化、子图持久化、跨线程持久化第8课 LangGraph Human-in-the-loop-断点设置、动态设置断点、编辑更新状态第9课 LangGraph Human-in-the-loop-等待用户输入、时间旅行、工具评审第10课 LangGraph在具有长期记忆的有状态Agent中的应用-长期记忆及短期记忆、过滤信息、删掉信息第11课 LangGraph在具有长期记忆的有状态Agent中的应用-摘要总结、跨线程持久化、代理语义搜索第12课 LangGraph工具集成与调用-直接调用ToolNode、大模型使用工具第13课 LangGraph工具集成与调用-工具调用报错处理、运行时值传递给工具、注入参数第14课 LangGraph工具集成与调用-配置传入工具、从工具更新图状态、管理大量工具第15课 LangGraph子图设计与实现-添加及使用子图、父图及子图状态管理第16课 LangGraph子图设计与实现-子图状态的查看与更新、子图输入输出的转换与处理第17课 LangGraph项目实战演练-多智能体系统主管委托各个代理第18课 LangGraph课程复习与答疑 自我反思案例及论文案例讲解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kakaZhui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值