CLIP 与 BLIP 技术详解与对比
引言
随着多模态人工智能的发展,视觉与语言的融合成为热门研究方向。在这一领域中,OpenAI 提出的 CLIP(Contrastive Language–Image Pretraining) 和 Salesforce 提出的 BLIP(Bootstrapped Language-Image Pretraining) 是两个极具代表性的基础模型。它们分别代表了两种不同的技术路线:匹配式模型(CLIP) 和 生成式模型(BLIP)。
本文将详细介绍这两个模型的原理、结构、适用场景,并进行系统性的对比,以帮助开发者选择适合自身业务的方案。
一、CLIP 技术详解
1.1 简介
CLIP 由 OpenAI 于 2021 年提出,其目标是训练一个能够理解图像与自然语言之间语义关系的模型。CLIP 能够零样本地完成图像分类、图像检索、打标签等任务,是“对比学习”在多模态领域的里程碑式成果。
1.2 核心思想
CLIP 的核心是对比学习(Contrastive Learning):它将图像和文本分别编码到同一个向量空间中,通过最大化匹配对之间的相似度、最小化不匹配对之间的相似度,实现图文对齐。
1.3 模型结构
- 图像编码器:ViT(Vision Transformer) 或 ResNet。
- 文本编码器:Transformer。
- 损失函数:对比损失(Contrastive Loss),基于 cosine similarity。
1.4 输入输出
- 输入:一张图片 + 一组文本描述。
- 输出:每个描述与图像之间的相似度分数。
输入:
图片:一只狗在公园奔跑
文本候选:
- “A dog running in a park”
- “A man cooking”
- “A cat sleeping”
输出:
- 相似度最高的是第一句 → 匹配成功
1.5 应用场景
- 图像分类(零样本)
- 图像打标签(CLIP + 候选标签匹配)
- 图文检索(找图 / 找词)
- 内容安全检测(如 NSFW 分类)
二、BLIP 技术详解
2.1 简介
BLIP 是 Salesforce Research 于 2022 年提出的图文预训练模型,主要用于图像描述(caption)、图文问答(VQA)等生成式任务。
2.2 核心思想
BLIP 融合了生成式预训练与图文匹配学习两种策略,兼具图像理解与文本生成能力。其训练使用了自监督+弱监督的大规模图文数据。
2.3 模型结构
- 图像编码器:ViT + Q-Former(用于高效提取视觉 token)。
- 文本模型:BERT / T5(支持编码器和解码器结构)。
- 训练目标:图文匹配 + 文本生成(caption / QA)。
2.4 输入输出
- 输入:一张图片 + prompt(问题 / 指令)。
- 输出:自然语言文本,如描述句或回答。
输入:
图片:一只狗在公园奔跑
Prompt:请用一句话描述这张图片
输出:
“A dog is running happily in a green park.”
2.5 应用场景
- 图像描述生成(Image Captioning)
- 图文问答(Visual Question Answering)
- 多模态对话系统(如 BLIP-2, LLaVA)
- 图文增强写作
三、CLIP vs BLIP:系统性对比
| 维度 | CLIP | BLIP |
|---|---|---|
| 全称 | Contrastive Language–Image Pretraining | Bootstrapped Language–Image Pretraining |
| 提出方 | OpenAI | Salesforce |
| 模型目标 | 图文对齐、相似度计算 | 图像理解 + 文本生成 |
| 模型结构 | 图像编码器 + 文本编码器 | 图像编码器 + 文本编码器 + 文本解码器 |
| 输入形式 | 图像 + 文本候选 | 图像 + prompt |
| 输出形式 | 相似度分数 | 文本(句子、回答等) |
| 主要任务 | 图像分类、打标签、图文检索 | 图像描述、问答、生成式理解 |
| 优势 | 零样本能力强,自定义标签易用 | 生成能力强,交互性高 |
| 常用模型 | ViT-B/32, ViT-L/14 | BLIP, BLIP-2, LLaVA(衍生) |
| 多语言支持 | 主要是英文(可通过 prompt 适配中文) | BLIP-2 支持多语言(部分模型) |
四、选型建议
| 使用场景 | 推荐模型 |
|---|---|
| 想给图像打标签(结构化) | CLIP + 标签匹配 |
| 想实现看图说话、图文问答 | BLIP / BLIP-2 |
| 想做图文检索、搜索 | CLIP |
| 想做多模态对话(ChatGPT那种) | BLIP-2 + LLaMA(如 LLaVA) |
五、总结
CLIP 和 BLIP 分别代表了多模态 AI 中两种典型范式:匹配型与生成型。CLIP 强在结构化相似度建模和零样本泛化能力,BLIP 强在自然语言生成和对图像内容的抽象理解能力。二者各擅胜场,也可以组合使用(如打标签后再生成描述)。
开发者在选择方案时,应根据任务需求、部署资源、期望的输出类型进行取舍。
记住一句话:CLIP 用来“找标签”,BLIP 用来“说人话”。
六、参考资料与链接
- OpenAI CLIP 论文与模型:https://openai.com/research/clip
- CLIP 开源实现:https://github.com/openai/CLIP
- HuggingFace CLIP 模型(可直接使用):https://huggingface.co/openai/clip-vit-base-patch32
- 中文 CLIP 模型(Taiyi-CLIP):https://huggingface.co/IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese
- Salesforce BLIP 项目主页:https://github.com/salesforce/BLIP
- Salesforce BLIP-2 项目主页:https://github.com/salesforce/LAVIS
- LLaVA 多模态大模型(基于 BLIP-2 + LLaMA):https://github.com/haotian-liu/LLaVA



609

被折叠的 条评论
为什么被折叠?



