Codeforces Round #311 (Div. 2) E - Ann and Half-Palindrome（字典树+dp）

E. Ann and Half-Palindrome
time limit per test
1.5 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Tomorrow Ann takes the hardest exam of programming where she should get an excellent mark.

On the last theoretical class the teacher introduced the notion of a half-palindrome.

String t is a half-palindrome, if for all the odd positions i () the following condition is held: ti = t|t| - i + 1, where |t| is the length of string tif positions are indexed from 1. For example, strings "abaa", "a", "bb", "abbbaa" are half-palindromes and strings "ab", "bba" and "aaabaa" are not.

Ann knows that on the exam she will get string s, consisting only of letters a and b, and number k. To get an excellent mark she has to find the k-th in the lexicographical order string among all substrings of s that are half-palyndromes. Note that each substring in this order is considered as many times as many times it occurs in s.

The teachers guarantees that the given number k doesn't exceed the number of substrings of the given string that are half-palindromes.

Can you cope with this problem?

Input

The first line of the input contains string s (1 ≤ |s| ≤ 5000), consisting only of characters 'a' and 'b', where |s| is the length of string s.

The second line contains a positive integer k —  the lexicographical number of the requested string among all the half-palindrome substrings of the given string s. The strings are numbered starting from one.

It is guaranteed that number k doesn't exceed the number of substrings of the given string that are half-palindromes.

Output

Print a substring of the given string that is the k-th in the lexicographical order of all substrings of the given string that are half-palindromes.

Sample test(s)
input
abbabaab
7

output
abaa

input
aaaaa
10

output
aaa

input
bbaabb
13

output
bbaabb

Note

By definition, string a = a1a2... an is lexicographically less than string b = b1b2... bm, if either a is a prefix of b and doesn't coincide withb, or there exists such i, that a1 = b1, a2 = b2, ... ai - 1 = bi - 1, ai < bi.

In the first sample half-palindrome substrings are the following strings — aaaaaaabaabaaabbaabbabaabbbbbaab,babbbbbabbbabaab (the list is given in the lexicographical order).

http://codeforces.com/contest/557/problem/E

O（n^2）的算法可行

#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;

const int N = 5000+5;
int dp[N][N];
char s[N];
int k;
int n;
struct node
{
node *son[2];
int cnt;
node()
{
memset(son,0,sizeof(son));
cnt = 0;
}
}trie[N*N];
int SZ = 0;
node *root,*cur;
node *createnode()
{
return &trie[SZ++];
}
void Insert(int p)
{
cur = root;
for(int i = p;i <= n;i++)
{
int val = s[i]-'a';
if(cur->son[val] == NULL) cur->son[val] = createnode();
cur = cur->son[val];
cur->cnt += dp[p][i];
}
}
int getsum(node *cur)
{
int sum = 0;
if(cur->son[0]) sum += getsum(cur->son[0]);
if(cur->son[1]) sum += getsum(cur->son[1]);
cur->cnt += sum;
return cur->cnt;
}
vector<char>ans;
bool dfs(node *cur,int &k)
{
if( k <= 0) return true;
if(cur->son[0])
{
ans.push_back('a');
if(cur->son[0]->cnt) k -= cur->son[0]->cnt;
if(dfs(cur->son[0],k)) return true;
ans.pop_back();
}
if(cur->son[1])
{
ans.push_back('b');
if(cur->son[1]->cnt)k -= cur->son[1]->cnt;
if(dfs(cur->son[1],k)) return true;
ans.pop_back();
}
return false;
}
int main()
{
scanf("%s%d",s+1,&k);
n = strlen(s+1);
for(int i =0;i <= n+2;i++)
for(int j = i;j >= 0;j--)
dp[i][j] = 1;
for(int len = 2;len <= n;len++)
for(int l = 1;l+len-1 <= n;l++)
{
int r = l+len-1;
dp[l][r] = (s[l] == s[r] && dp[l+2][r-2]);
}
root = createnode();
REP(i,n)Insert(i);
dfs(root,k);
foreach(i,ans) putchar(*i);
}


//GNU C++	Accepted	374 ms	392200 KB
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;

const int N = 5000+5;
int dp[N][N];
char s[N];
int k;
int n;
struct node
{
node *son[2];
int cnt;
node()
{
memset(son,0,sizeof(son));
cnt = 0;
}
}trie[N*N];
int SZ = 0;
node *root,*cur;
node *createnode()
{
return &trie[SZ++];
}
void Insert(int p)
{
cur = root;
for(int i = p;i <= n;i++)
{
int val = s[i]-'a';
if(cur->son[val] == NULL) cur->son[val] = createnode();
cur = cur->son[val];
if(i != p)cur->cnt += dp[p][n]-dp[p][i-1];
else cur->cnt += dp[p][n];
}
}

void query(node*cur,int k) //二分过程
{
if(k <= 0) return ;
if(cur->son[0] && cur->son[0]->cnt >= k)
{
int cnt = cur->son[0]->cnt;
cur = cur->son[0];
if(cur->son[0]) cnt -= cur->son[0]->cnt;
if(cur->son[1]) cnt -= cur->son[1]->cnt;
putchar('a');
query(cur,k-cnt);
}
else if(cur->son[1])
{
if(cur->son[0]) k -= cur->son[0]->cnt;
int cnt = cur->son[1]->cnt;
cur = cur->son[1];
if(cur->son[0]) cnt -= cur->son[0]->cnt;
if(cur->son[1]) cnt -= cur->son[1]->cnt;
putchar('b');
query(cur,k-cnt);
}
}

int main()
{
scanf("%s%d",s+1,&k);
n = strlen(s+1);
for(int i =0;i <= n+2;i++)
for(int j = i;j >= 0;j--)
dp[i][j] = 1;
for(int len = 2;len <= n;len++)
for(int l = 1;l+len-1 <= n;l++)
{
int r = l+len-1;
dp[l][r] = (s[l] == s[r] && dp[l+2][r-2]);
}

REP(i,n)
for(int j = i+1;j <= n;j++) dp[i][j] += dp[i][j-1];
root = createnode();
REP(i,n) Insert(i);
query(root,k);
}


Codeforces835D-Palindromic characteristics(DP)

2017-08-02 10:42:42

Mahmoud and a Message - c (dp)

2017-02-08 15:41:00

（Kattis - palindromic ）G - Palindromic Naming（DP）（补）

2017-07-30 16:13:23

Codeforces 557E - Ann and Half-Palindrome （字典树+DP）

2015-07-27 18:06:16

Codeforces 494B. Obsessive String KMP+DP

2015-03-20 22:22:47

Codeforces Round #426 (Div. 2) D. The Bakery（DP+线段树）

2017-07-31 09:16:44

【CodeForces】CodeForces Round #464 (Div. 2) 题解

2018-02-18 11:05:43

CF-Codeforces Round #483 (Div. 2)-D-XOR-pyramid

2018-05-16 01:15:04

CF-Codeforces Round #483 (Div. 2) A~D

2018-05-16 00:48:25

Codeforces Round #444 (Div. 2)-贪心&尺取-Ratings and Reality Shows

2017-11-11 20:11:11