小波消噪在飞行器捷联惯性导航初始对准中的应用

翻译 2018年04月16日 16:08:34

小波消噪在飞行器捷联惯性导航初始对准中的应用

穆罕默德·伊利亚斯                 杨云春                              张任

北京航空航天大学          NavTechnology有限公司           北京航空航天大学

电气工程及其自动化专业           北环中心            电气工程及其自动化专业

中国,北京,1001915           中国,北京,100029         中国,北京,1001915

milyas_qau@hotmail.com           navtek@nav.cn             renzhang@buaa.edu.cn

 

摘要:初始姿态误差是高精度惯性导航中最重要的误差来源之一。准确地估计初始姿态角度是精确确定移动平台的位置、速度和姿态的保证。对于军用飞机而言,要求初始对准精度高、时间短。所需的惯性信号(加速度计比力和陀螺仪角速率)被掩没在高频测量噪声中。当飞行器启动时,发动机的振动和其他干扰将引起高频噪声。卡尔曼滤波器已广泛应用于捷联惯性导航系统(SINS)的初始精对准中。本文提出了多分辨率小波消噪(MRWD)方法,用于初始精对准之前消除惯性传感器测量信号中的高频噪声。本文提出的方法使用载体发动机通电时采集的实际数据进行测试验证。结果表明,该方法可以有效提高初始对准的精确性。

关键词:SINS(捷联惯性导航系统)  初始对准  小波消噪  卡尔曼滤波

 

惯性测量单元(IMU)由3个加速度计和3个陀螺仪组成

 

1. 引言

如今,惯性导航系统被用于各种商业和军用飞机、船舶、军用坦克、潜艇,各种规模的导弹和太空汽车助推器。对于飞机导航而言,因为坐标系相对于地球椭球体而定向,因此可使用本地等级地理坐标系作为计算坐标系。初始对准可以近似地通过计算从机体到导航坐标系的旋转矩阵中的元素完成[1]。由于初始对准对高精度惯性导航至关重要,因此需要对该课题进行广泛的研究[2][3][4]。目前已经完成了对惯性导航精对准的估计[5],并显示了它是如何影响导航精度的。

惯性导航系统(INS)是由惯性传感器组成的独立系统,用于测量运动物体的加速度和旋转。传感器整体是一个惯性测量单元(IMU),由三个加速度计和三个陀螺仪组成,这些加速度计和陀螺仪安装在正交三元组上。这些测量是针对惯性参照系进行的。主载体的位置、速度和姿态通过在明确定义的坐标系中的加速度和角速度的积分来获得。这一概念的实现需要计算导航坐标系与由IMU敏感轴定义的测量坐标系之间的转换。通过不断更新转换(或姿态)矩阵来实现b系和n系之间的关系。为了限制导出参数中的误差,确定此类矩阵的高精度初始值至关重要[6]。

由于SINS是独立的,所以自校准方法可以用来计算导航级SINS的旋转矩阵元素,如第3节所述。计算旋转矩阵初始值的过程被称为SINS初始对准。通过粗对准(CA)和精对准(FA)两个步骤完成对准。粗对准的目的是确定b系和n系之间的姿态角(滚动,俯仰和航向)的近似值。精对准使用迭代技术来提高估计值的精度[7][8]。

对于军用飞机来说,初始对准要求精度高、时间短。当飞机在跑道上准备起飞时,可能需要快速准确地进行SINS初始对准。由于发动机振动、阵风、装载、燃油喷射和不确定的人体撞击,飞机不是绝对静止的,所以惯性传感器的输出含有这种外部干扰的误差。

惯性测量单位(IMU)有两种类型的误差:长期误差(低频噪声)和短期误差(高频噪声)[9]。由于发动机振动和外部干扰,在测量惯性输出时会引入一些短期误差。对惯性传感器数据进行预滤波以获得高频噪声可以改善SINS的初始对准。小波消噪法已能良好应用于惯性传感器原始输出在对准和惯性导航中的滤波[10]。本文研究了在飞机发动机启动时用于消除初始对准的短期噪声的小波多分辨率分析(WMRA)。其目的是在粗对准阶段计算更精确的初始旋转矩阵并加快精对准的效率。

本文的组织结构如下:第二节简要介绍一种信号的小波多分辨率分析。第三节介绍粗对准理论、系统动力学误差模型和精对准测量模型。在第四节中,介绍了卡尔曼滤波器的实现方程。实验程序和结果评估在第五节中完成。最后的结论在第六节中得出。

 

2. 小波多分辨率分析

由于实际以及理论上的原因,估计被附加噪声破坏的信号引起了许多研究人员的兴趣。我们希望复原信号尽可能接近实际信号,保留其大部分重要特性(例如平滑度)[11]。传统的去噪方法包括移动平均法和低通滤波技术。近年来,作为一种新兴的技术,小波分解更多地应用于应对惯性传感器噪声。而许多其他方法,如神经网络去噪法,也被广泛研究。

因此小波分析能够显示其他信号分析技术漏掉的信息,如趋势、高阶导数中的断点和不连续性以及自相似性。小波也能够对信号进行压缩或去噪,而不会过于破坏原始信号[12]。

A.    快速离散小波变换与重构

Mallat提出了多分辨率分析,并提出了一种基于小波变换和重构的快速算法,将其命名为Mallat算法。根据算法,如果包含的采样信息,且,则正交小波分解公式为[13]。

其中和分别是近似和详细的系数,j是分解的水平,h和g是低通和高通滤波器系数。

重构是小波分解的逆过程。快速小波重构的等式为:

B.    小波阈值选择与算法

小波阈值技术是一种信号估计技术,它利用小波变换的能力进行信号去噪。小波阈值技术能够无失真地降低噪声水平。因此,它可以被惯性传感器信号的预处理滤波器使用,克服了现有低通滤波器的不足。让我们把看作被白噪声破坏后的惯性传感器输出。噪声的输出可以表示为:

我们想估计原始信号的,以便使均方误差最小化。设w是正交波变换算子。那么等式(4)可以写成:

现在,设为小波阈值算子,小波去噪方案可表示为[11]:

Donoho等人提出了软阈值和硬阈值两个阈值运算符[14]。在这项研究中,由于从软阈值获得的去噪信号更加平滑,因此采用软阈值。软阈值函数定义为[11]:

Donoho给出了最优的通用阈值[14]:

其中,是信号噪声方差,N是信号的长度。信号去噪分三步执行:

1)使用特定小波将噪声信号分解至所需水平以获取小波系数。

2)选择合适的阈值函数和阈值来计算去噪系数。

3)执行逆小波变换以重构去噪信号。

C. 小波分解与LOD的合理选择

在小波分解中,相关信号通过两个互补的半波段滤波器:一个低通滤波器和一个高通滤波器。低通滤波器的输出称为“近似部分”,高通滤波器的输出称为“精确部分”,根据奈奎斯特定理,如果测量信号的采样频率为,则在测量中可以出现的最大频率分量是。

因此,在应用小波离散变换时,近似部分将包含频率小于及频率在和之间的分量。为了获得较低的分辨率,分解压缩可以迭代,逐次逼近分解直至达到期望值的极限。这个过程被称为小波多分辨率分解(WMRD)。

地球的重力和旋转速率是低频信号。频谱分析(不是本研究的一部分)表明,这些信号的频带以及一些长期(低频)噪声限制在0.8Hz内。分解水平(LOD)的合适值可以计算如下:

其中,是频带限制值,n是LOD。

本研究中使用的LINS800SINS惯性传感器的采样频率为200Hz。因此,六级分解将把频带限制在大约0.8Hz,并足以消除高频噪声。进一步分解可能会失去原始信号的有用信息。

在这项研究中,使用了Daubechies(db6)小波和基于Stein的“Ribrsure”阈值原理。“Ribrsure”是选择阈值时自适应的无偏似然估计。

 

3. SINS的自我初始对准方法

捷联惯性导航系统中的对准问题基本上是确定能将仪器化机体坐标系与参考计算坐标系相关联的初始变换矩阵。此外,如果是针对惯性导航系统的商业应用,自校准的手段将是必不可少的[6]。SINS的自校准是一个两阶段过程,即先粗对准,然后精对准。

A.    粗对准

北,东和下(NED)是本文中用于导航计算的导航坐标系。为了在导航坐标系中持续更新主载体的速度和位置,需要加速度计测量值的转换。NED系中的局部重力矢量和地球自转率可表示为:

其中,,是总地球速率,L是纬度,g是局部重力的大小。

从机体坐标系(b系)到导航坐标系(NED)的变换矩阵被定义为:

其中s和c分别代表正弦和余弦函数。此旋转矩阵是正交矩阵。则以下关系成立:

在静止的对准中,加速度计和陀螺仪测量机体坐标系中地球的重力和角速度。在粗对准期间,加速度计和陀螺仪的测量结果在一到两分钟内取平均值,以估计横滚角,俯仰角和偏航角[15]。加速度计的测量结果与地球引力的关系如下:

由(13)可得,横滚和俯仰可计算为:

由(14)可得,横滚角和俯仰角可以根据加速度计的输出来估计,而不需要知道当地的地球重力值。一旦我们有了横滚和俯仰,航向角可以计算为:

其中,、、是横滚、俯仰和航向的近似值。根据上述估算的欧拉角计算近似旋转矩阵。

B.    精对准的SINS误差模型

惯性传感器具有随机偏差和测量误差。在粗对准期间,只需要大概估计旋转矩阵。精对准是估计真实坐标系和计算坐标系之间的微小偏差的过程。卡尔曼滤波器通常用于精确对准。

(1) 系统动态误差模型

SINS误差模型可以用文献[16]中的摄动法很好地推导出来。静基座上精对准的10级误差模型表示为:

其中:

是误差状态向量。

和是速度和姿态误差,是加速度计偏差,是陀螺漂移率。G是噪声整形矩阵,w处理具有功率谱密度Q(t)的白噪声。

(2) 测量模型

对于静态初始对准,位置是恒定的并且载体的速度为零。使用导航力学编排,可以计算载体的速度,这可以看作是静止物体速度的误差。该速度误差被用作精对准的测量。测量模型表示为:

其中,是测量向量,v是零均值随机高斯白噪声。

 

4. 用于精对准的卡尔曼滤波

(16)和(17)中描述的线性动态模型可以以离散形式表示为:

其中,。和被建模为不相关的零均值高斯白噪声序列,例如:

是过程噪声的协方差矩阵,其计算公式为:

是测量噪声的协方差矩阵,是滤波周期。

标准卡尔曼滤波器方程如下:

一步状态和误差协方差预测:

卡尔曼增益计算:

一步状态更正和误差协方差更新:

 

5. 实验结果和评估

为了检验本文提出的小波多分辨率去噪(WMRD)的有效性,我们对飞行器导航的LINS800导航级系统(由北京NavTechnology有限公司开发)进行了初始对准实验。LINS800由三个环形激光陀螺仪和三个加速度计沿三个相互正交的轴线组成。LINS800系统安装在处于静止状态的载体中。以这种方式收集了两组真实数据:

1)当载体的发动机断电时收集的第一组数据。

2)当载体的发动机启动时收集的第二组数据。

图1 精对准的流程图

在MATLAB环境下实现了导航参数计算和包括小波去噪在内的初始对准的卡尔曼滤波算法。图1显示了SINS初始对准方案。首先,利用小波多分辨率方法对原始惯性数据进行高频噪声滤波,并进行粗对准以计算姿态角和初始四元数。然后,初始四元数和预过滤惯性数据代入捷联力学编排算法,此算法在200Hz的积分和转换后计算出位置,导航坐标系的速度和姿态。

因为载体是静止的,因此从捷联力学编排算法计算出的速度看作是速度误差,并且是卡尔曼滤波器的测量输入。卡尔曼滤波器更新间隔为1Hz。这些估计误差被用作捷联力学编排的反馈以修正速度和四元数。以这种方式,用作滤波器观测值的速度误差的演变被最小化。

收集发动机断电时的四组数据并进行初始对准测试。对准结果如表1所示。这四个结果的平均值被认为是真实的姿态角。由于载体发动机启动、振动和其他外部干扰,短期(高频)噪音会对惯性数据的测量产生影响。因此,需要通过适当的预过滤技术以获得快速和精确的对准。小波多分辨率去噪技术是一种很好的技术,可以在不影响原始信息的情况下去除惯性传感器的高频噪声。这种技术适用于在振动条件下从LINS800收集的实际数据。6级分解(LOD)足以减少短期误差。SINS的一个通道(垂直通道)的小波去噪结果如表2和图2所示。去噪后,惯性测量的标准偏差显着降低。小波去噪法可以消除惯性传感器的高频噪声,并在粗对准中获得更精确的姿态。但是,消除低频噪声仍然需要精对准。

表1 四组对准测试的结果

组别

横滚(°)

俯仰(°)

航向(°)

1

-0.16657

-2.28360

59.38876

2

-0.16814

-2.28568

59.40585

3

-0.15480

-2.28988

59.43050

4

-0.16619

-2.29058

59.402867

平均值

-0.16393

-2.28744

59.406998

 

表2 测量值的标准差

传感器

平均值

去噪前

去噪后

单位

陀螺仪

-9.878

197.035

9.36

度/小时

加速度计

-9.792

0.555

0.00191

米/秒2

图3和图4显示了精对准期间估计的姿态角的结果。为了进行比较,我们已经分别在发动机断电、发动机启动和发动机启动期间过滤数据的情况下进行了良好的对准。这些结果表明,在对惯性测量值进行去噪,并应用10个状态卡尔曼滤波器后,方位角估计值的收敛速度和精度大大提高。我们还观察到,在对精对准的输入进行去噪后,粗对准的准确性也增加了。图6表明去噪后方位角角误差的收敛速度较快。

 

图2 角速率和加速度测量

 

图3 精对准中横滚角和俯仰角的估计值

 

图4 精对准中航向角的估计值

 

图5 横滚和俯仰的估计误差

 

图6 航向的估计误差

 

6. 结论

本文提出了小波多分辨率分解方法和精对准算法,当飞机在跑道准备起飞时,通常发动机处于启动状态。在精对准之前利用基于小波去噪的预滤波来限制噪声水平。实验结果表明,预滤波数据中,精对准的时间减少了,并且与噪声数据相比给出了更精确的角度估计。本文所提出的方法在发动机启动而导致的振动条件下快速且准确地提供了飞机的初始对准。

 

致谢

这项工作得到了北京NavTechnology有限公司的支持。作者感谢杨运春博士对完成这项工作的鼓励和支持。作者还感谢丁新春先生和邱先生为本文的实验数据收集提供的帮助和支持。

 

 

参考文献

[1]     A. B. Chatfield,“Fundamentals of high accuracy inertial navigation,” AIAA, vol. 174, 1997.

[2]     H. Chunmei, S. U. Wanxin,L. I. U. Peiwei, and M. A. Minglong, “Application of Adaptive Kalman FilterTechnique in Initial Alignment of Strapdown Inertial Navigation System,” in 29th Chinese Control Conference, 2010,pp. 2087-2090.

[3]     W. Hong, D. Xiao, and H.O. U. Qing, “Application of adaptive K alman f ilter in initial alignment ofSINS on stationary base,” Control,2008.

[4]     N. M. Gao Weixi, MIOALingjuan, “Multiple Fading Factor Kalman Filter for SINS Static AlignmnetApplication,” Chinese Journal ofAeronautics, vol. 24, pp. 476-483, 2011.

[5]     M. Reinstein, “Evaluationof Fine Alignment Algorithm for inertial navigation,” Evaluation, no. 7, pp. 255-258, 2011.

[6]     R. Britting, Inertial Navigation Systems Analysis.New York: John Wiley & Sons;, 1971.

[7]     P. G. Savage, “StrapdownSystem Computational Elements,” pp. 1-

28.

[8]     R. . Rogers, Applied Mathematics in Integrated NavigationSystems, 2nd ed. American Institute of Aeronautics and Astronautics Inc,Reston, Virginia, USA, 2003.

[9]     J. SKALOUD, A. M. BRUTON,and K. P. SCHWARZ, “Detection

andfiltering of short-term (1/fȖ) noise in inertial sensors,” Navigation, vol. 46, no. 2, pp. 97-107.

[10]  N.El-Sheimy, S. Nassar, and A. Noureldin, “Wavelet de-noising for IMU alignment,”IEEE Aerospace and Electronic SystemsMagazine, vol. 19, no. 10, pp. 32-39, Oct-2004.

[11]  B.-J.Y. and P. . P. . Vaidyanathan, “WAVELET-BASED DENOISING BY CUSTOMIZEDTHRESHOLDING,” in ICASSP,

2004.

[12]  A.G. and H. G. Burrus, R., Introduction toWavelet and Wavelet Transform. A Primer. Prentice Hall Inc., New Jersey,USA, 1998.

[13]  Ji,Xunsheng,Wang Shourong,Xu Yishen and J. W. S. X. Y.

Xunsheng,“Application of Fast Wavelet Transformation in Signal Processing of MEMSGyroscope,” Journalof Southest University,vol. 22, no. 4, pp. 510-513, 2006.

[14]  D.L. and I. M. J. Donoho, “Adapting to unknown smoothness via wavelet shrinkage,”pp. 1200-1224, 1995.

[15]  Y.F.Jiang, “Error Analysis of Analytic Coarse Alignment Method,” Ieee Transactions On Aerospace AndElectronic Systems, vol. 34, no. 1, pp. 18-21, 1998.

J.Titterton, D.H. Weston, StrapdownInertial Navigation Technology. Peter Pereguin, London, 1997.  

收藏助手
不良信息举报
您举报文章:小波消噪在飞行器捷联惯性导航初始对准中的应用
举报原因:
原因补充:

(最多只允许输入30个字)