There are n flights, and they are labeled from 1 to n.
We have a list of flight bookings. The i-th booking bookings[i] = [i, j, k] means that we booked k seats from flights labeled i to j inclusive.
Return an array answer of length n, representing the number of seats booked on each flight in order of their label.
Example 1:
Input: bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5
Output: [10,55,45,25,25]
Constraints:
1 <= bookings.length <= 20000
1 <= bookings[i][0] <= bookings[i][1] <= n <= 20000
1 <= bookings[i][2] <= 10000
running sum,也叫扫描线,重点在于一个interval有一个值的情况下,我们只看变化的index和变化值,最后叠加就是最终答案。
Intuition
Since ranges are continuous, what if we add reservations to the first flight in the range, and remove them after the last flight in range? We can then use the running sum to update reservations for all flights.
This picture shows the logic for this test case: [[1,2,10],[2,3,20],[3,5,25]].

public int[] corpFlightBookings(int[][] bookings, int n) {
int[] res = new int[n];
for (int[] v : bookings) {
res[v[0] - 1] += v[2];
if (v[1] < n) res[v[1]] -= v[2];
}
for (int i = 1; i < n; ++i) res[i] += res[i - 1];
return res;
}
航班预订统计算法
本文介绍了一种高效处理航班预订统计的算法。通过将预订区间转化为关键点上的数值变化,使用扫描线(runningsum)技术,可以快速计算出每个航班的具体预订座位数。这种方法避免了直接遍历每个预订区间,大大提高了计算效率。
342

被折叠的 条评论
为什么被折叠?



