题意:给你一些点,和有向边。
问你任选两点,是否可以单连通。即选择x ,y 两点,存在x -> y 或者y->x都可以。
思路:先求出强连通分量,然后缩点求出入度和出度。
如果入度为0的分量大于等于2或者出度为0的分量大于等于2,那么则不可能单联通。
想一下还是很好理解的,拿入度为0的讲,如果存在两个强连通分量入度为0,那么这两个点集中的点必然不能单连通。同理出度为0。
加了输入外挂,47MS,POJ排到第四名。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <queue>
#include <set>
#include <vector>
#include <stack>
#include <map>
#include <iomanip>
#define PI acos(-1.0)
#define Max 2005
#define inf 1<<28
#define LL(x) (x<<1)
#define RR(x) (x<<1|1)
#define FOR(i,s,t) for(int i=(s);i<=(t);++i)
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
#define mp(a,b) make_pair(a,b)
using namespace std;
struct kdq
{
int e ,next ;
} ed[Max * 50] ;
int head[Max] ,num1 ;
int dfn[Max] ,low[Max] , vis[Max] , st[Max] , in[Max] ,out[Max] ,belong[Max] ,cnt[Max] ;
int tp = 0 ,dp = 0 ,num = 0 ;
void add(int a ,int b)
{
ed[num1].e = b ;
ed[num1].next = head[a] ;
head[a] = num1 ++ ;
}
void init()
{
mem(dfn,-1) ;
mem(low,0) ;
mem(vis,0) ;
mem(st,0) ;
mem(in,0) ;
mem(out,0) ;
mem(belong,0) ;
mem(head,-1) ;
mem(cnt,0) ;
num = num1 = tp = dp = 0 ;
}
inline void readint(int &ret)
{
char c;
do
{
c = getchar();
}
while(c < '0' || c > '9');
ret = c - '0';
while((c=getchar()) >= '0' && c <= '9')
ret = ret * 10 + ( c - '0' );
}
void tarjan(int now)
{
vis[now] = 1 ;
st[tp ++ ] = now ;
dfn[now] = low[now] = dp ++ ;
for (int i = head[now] ; i != -1 ; i = ed[i].next )
{
int v = ed[i].e ;
if(dfn[v] == -1)
{
tarjan(v) ;
low[now] = min(low[now] ,low[v]) ;
}
else if(vis[v])
{
low[now] = min(low[now] ,dfn[v]) ;
}
}
if(low[now] == dfn[now])
{
int xx ;
num ++ ;
do
{
xx = st[-- tp ] ;
vis[xx] = 0 ;
belong[xx] = num ;
cnt[num] ++ ;
}
while(xx != now) ;
}
}
int main()
{
int T ;
cin >> T ;
while( T -- )
{
init() ;
int n , m ;
cin >> n >> m ;
for (int i = 0 ; i < m ; i ++)
{
int a , b ;
readint(a) ;
readint(b) ;
// scanf("%d%d",&a,&b) ;
add(a,b) ;
}
for (int i = 1 ; i <= n ; i ++ )
if(dfn[i] == -1)tarjan(i) ;
for (int i = 1 ; i <= n ; i ++ )
{
for (int j = head[i] ; j != -1 ; j = ed[j].next )
{
int x = belong[i] ;
int y = belong[ed[j].e] ;
if(x != y)
{
out[x] ++ ;
in[y] ++ ;
}
}
}
int anso = 0 ,ansi = 0 ;
for (int i = 1 ; i <= num ; i ++ )
{
if(in[i] == 0)ansi ++ ;
else if(out[i] == 0) anso ++ ;
}
if(ansi >= 2 || anso >= 2)cout <<"No"<<endl;
else cout <<"Yes"<<endl;
}
return 0 ;
}