线性代数-第二章 矩阵

线性代数-第二章 矩阵

矩阵概念

  • 矩阵的定义:就是 m × n m×n m×n个数组成的数表
  • 同型矩阵:两个矩阵的行列数相等
  • 矩阵相等:两个矩阵是同型矩阵,且对应位置的元素相等
  • 几个简单的概念:方阵、一阶方阵、列(行)矩阵、零矩阵、负矩阵、上(下)三角形矩阵(一定是方阵)、对角形矩阵(一定是方阵)也可记作 d i a g ( a 1 , a 2 , … , a n ) diag(a_1,a_2, \dots ,a_n) diag(a1,a2,,an)
  • 数量矩阵(一定是方阵):主对角线的元素相等
  • 单位阵(一定是方阵):主对角线全是1

 

矩阵的加法、减法、数乘

  • 矩阵加(减)法:必须是两个同型矩阵,对应位置相加(减)
  • 矩阵的数乘:数 k 乘以矩阵 A,就是用数 k 乘以矩阵 A 的每一个元素

 

矩阵的乘法

  • 矩阵的乘法定义:只有当左边矩阵的列数等于右边矩阵的行数,两个矩阵才可以相乘。

    若矩阵 A m × n A_{m×n} Am×n 与矩阵 B n × s B_{n×s} Bn×s 相乘,乘完的结果是 A B m × s {AB}_{m×s} ABm×s

    相乘的规则是:A 矩阵的每一行(第 i i i 行)的元素分别乘以 B 矩阵的每一列(第 j j j 列)元素再相加,为结果矩阵的第 i j ij ij 个元素

  • 矩阵乘法不满足的规律 (重要指数:⭐⭐⭐⭐⭐)

    • 不满足交换律(所以矩阵的乘法分左乘和右乘两种)
    • 不满足消去律:若 A B = A C AB=AC AB=AC,且 A ≠ 0 A≠0 A=0,推不出 B = C B=C B=C,同样的若 B A = C A BA=CA BA=CA,且 A ≠ 0 A≠0 A=0,推不出 B = C B=C B=C
    • 两个非零矩阵的乘积可能是零矩阵:若 A B = 0 AB=0 AB=0,推不出 A = 0 A=0 A=0 B = 0 B=0 B=0
  • 矩阵乘法满足的规律

    • 结合律: ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)

    • 分配律: ( A + B ) C = A C + B C (A+B)C=AC+BC (A+B)C=AC+BC,或者 C ( A + B ) = C A + C B C(A+B)=CA+CB C(A+B)=CA+CB

    • k ( A B ) = ( k A ) B = A ( k B ) k(AB)=(kA)B=A(kB) k(AB)=(kA)B=A(kB)

    • A E = A , E A = A AE=A,EA=A AE=A,EA=A,其中 E E E 是单位矩阵

    • 数量矩阵
      A = [ a a ⋱ a ] = a E A= \begin{bmatrix} {a }& & &\\ &{a}& & \\ & &{\ddots}& \\ & & &{a }\\ \end{bmatrix} = aE A= aaa =aE
      则有 A B = a B AB=aB AB=aB

    • 两个对角形矩阵相乘等于两个矩阵的主对角线元素分别相乘

  • 矩阵的可交换:若矩阵 A , B A,B A,B,满足 A B = B A AB=BA AB=BA,则称矩阵 A A A 与 矩阵 B B B 可交换。否则称 A , B A,B A,B不可交换

    • 矩阵 A , B A,B A,B一定是同型矩阵
    • 若不是同阶方阵,一定不可交换
    • A B , B A AB,BA AB,BA 不相等,一定不可交换
    • 单位矩阵和任意同阶矩阵可交换, A E = E A AE=EA AE=EA
    • 两个同阶对角形矩阵可交换

 

方阵的幂

  • 一个方阵 A 的 k 次方,就是 k 个方阵 A 相乘。规定 A 0 = E A^0=E A0=E

  • 方阵的性质:设 A 为方阵, k 1 , K 2 k_1,K_2 k1,K2 为非负整数,则:

    • A k 1 A k 2 = A k 1 + k 2 A^{k_1}A^{k_2}=A^{k_1+k_2} Ak1Ak2=Ak1+k2
    • ( A k 1 ) k 2 = A k 1 K 2 (A^{k_1})^{k_2}=A^{k_1K_2} (Ak1)k2=Ak1K2
    • ( l A ) k = l k A k (lA)^k=l^kA^k (lA)k=lkAk l l l 为常数

    注:由于矩阵的乘法不满足交换律,因此一般情况下, ( A B ) k ≠ A k B k (AB)^k≠A^kB^k (AB)k=AkBk

  • 矩阵 A,B 满足可交换,则:

    • A 2 − B 2 = ( A + B ) ( A − B ) = ( A − B ) ( A + B ) A^2-B^2=(A+B)(A-B)=(A-B)(A+B) A2B2=(A+B)(AB)=(AB)(A+B)
    • ( A ± B ) 2 = A 2 ± 2 A B + B 2 (A±B)^2=A^2±2AB+B^2 (A±B)2=A2±2AB+B2
    • A 3 − B 3 = ( A − B ) ( A 2 + A B + B 2 ) A^3-B^3=(A-B)(A^2+AB+B^2) A3B3=(AB)(A2+AB+B2)
    • A 3 + B 3 = ( A + B ) ( A 2 − A B + B 2 ) A^3+B^3=(A+B)(A^2-AB+B^2) A3+B3=(A+B)(A2AB+B2)
    • ( A B ) k = A k B k (AB)^k=A^kB^k (AB)k=AkBk

    注:这里矩阵A,B 必须满足可交换,若不满足,则不成立。但是有个例外,若矩阵 B 是单位矩阵 E,则上述性质均成立,因为任意矩阵与单位矩阵可交换

  • 方阵多项式:

    • 对于多项式有: f ( x ) = a m x m + a m − 1 x m − 1 + ⋯ + a 1 x + a 0 f(x)=a_m x_m+a_{m-1}x^{m-1}+ \dots +a_1 x+a_0 f(x)=amxm+am1xm1++a1x+a0

    • 则对于方阵多项式: f ( A ) = a m A m + a m − 1 A m − 1 + ⋯ + a 1 A + a 0 E f(A)=a_m A_m+a_{m-1} A^{m-1}+ \dots +a_1 A+a_0 E f(A)=amAm+am1Am1++a1A+a0E

      要注意的是:在常数项后加了单位矩阵

​ 骚题一道:
在这里插入图片描述

 

矩阵的转置

  • 矩阵转置的定义:将矩阵的行列互换

  • 转置矩阵的性质

    • ( A T ) T = A (A^T)^T=A (AT)T=A
    • ( A + B ) T = A T + B T , ( A − B ) T = A T − B T (A+B)^T=A^T+B^T,(A-B)^T=A^T-B^T (A+B)T=AT+BT,(AB)T=ATBT
    • ( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT,k为常数
    • ( A B ) T = B T A T (AB)T=B^TA^T (AB)T=BTAT
    • ( A k ) T = ( A T ) k (A^k)^T=(A^T)^k (Ak)T=(AT)k
  • 对称矩阵(一定是方阵):如果 A T = A A_T=A AT=A,则称矩阵 A 为对称矩阵,即矩阵中的元素 a i j = a j i a_{ij}=a_{ji} aij=aji,主对角线的元素可以为任意值。矩阵中的元素关于主对角线对称

  • 对称矩阵具有一下结论:

    • A , B A,B AB 为同阶对称矩阵,则 A + B , A − B A+B,A-B A+B,AB 仍为对称矩阵
    • A A A 为对称矩阵,则 k A , A m kA,A^m kA,Am 仍为对称矩阵( k k k 为常数, m m m 为正整数)
    • A , B A,B AB 为同阶对称矩阵,则 A B AB AB 为对称矩阵的充要条件是 A B = B A AB=BA AB=BA
    • 对任意 m × n m×n m×n 矩阵 A A A,则 A T A , A A T A^TA,AA^T ATA,AAT 均为对称矩阵
  • 反对称矩阵(一定是方阵):如果 A T = − A A_T=-A AT=A,则称矩阵 A 为反对称矩阵,即矩阵中的元素 a i j = − a j i a_{ij}=-a_{ji} aij=aji但是主对角线的元素全为0。矩阵中的元素关于主对角线互为相反数(结合对称矩阵记忆)

  • 反对称矩阵具有一下结论:

    • A , B A,B AB 为同阶反对称矩阵,则 A + B , A − B A+B,A-B A+B,AB 仍为反对称矩阵
    • A A A 为对称矩阵, k k k 为常数,则 k A kA kA 仍为对称矩阵
    • A A A 为对称矩阵, k k k 为正整数,则 A k A^k Ak​ 为 { 对称矩阵 , k 为偶数 反对称矩阵 , k 为奇数 \left\{\begin{matrix}对称矩阵,k为偶数 \\反对称矩阵,k为奇数\end{matrix}\right. {对称矩阵,k为偶数反对称矩阵,k为奇数

 

方阵的行列式

  • 方阵行列式的定义:对与方阵 A,直接求行列式即可

    注:只有方阵才能求行列式,对方阵求行列式只是方阵的诸多性质中的一个性质,后面还会有其他的性质

  • 方阵行列式的性质

    A , B A,B A,B n n n 阶方阵, k k k 为常数, m m m 为正整数,则:

    • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
    • ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA(重要指数:⭐⭐⭐⭐⭐)
    • ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ |AB|=|A| \cdot |B| AB=AB,注: ∣ A 2 × 3 B 3 × 2 ∣ ≠ ∣ A 2 × 3 ∣ ⋅ ∣ B 3 × 2 ∣ |A_{2×3}B_{3×2}|≠|A_{2×3}|\cdot|B_{3×2}| A2×3B3×2=A2×3B3×2
    • ∣ A m ∣ = ∣ A ∣ m |A^m|=|A|^m Am=Am
    • ∣ E ∣ = 1 |E|=1 E=1

 

方阵的伴随矩阵

  • 伴随矩阵的定义:对方阵中的每个元素求代数余子式,将求得的每个代数余子式按照所对应的元素的组成一个矩阵,然后对该矩阵求转置,即该方阵的伴随矩阵,记作 A ∗ A^* A。也就是按行求的代数余子式,要按列排放。

    方阵 A A A 中的元素 a i j a_{ij} aij 的代数余子式为 A i j A_{ij} Aij,则 A A A 的伴随矩阵为:

    在这里插入图片描述

    注:三阶的方阵,求伴随矩阵常考。

    注:方阵都有伴随矩阵。

  • 伴随矩阵的性质:

    • 对任意方阵 A A A:有 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

      宋浩老师的证明,可以看看:

      在这里插入图片描述

    • A A A n n n 阶方阵,则 A ∗ = ∣ A ∣ n − 1 A^*=|A|^{n-1} A=An1

      证明有点难,牵扯到了后面的知识:

      在这里插入图片描述

    • A A A 为方阵,则 ( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T

      证明可以用三阶方阵分别写一下等式两边即可得到,强烈建议自己写一下

    • A A A n n n 阶方阵, k k k 为常数,则 ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

      证明可以用三阶方阵写一下等式左边即可得到,强烈建议自己写一下

    • A = ( a b c d ) A=\begin{pmatrix}a&b\\c&d\\\end{pmatrix} A=(acbd),则 A ∗ = ( d − b − c a ) A^*=\begin{pmatrix}d&-b\\-c&a\\\end{pmatrix} A=(dcba)

      证明可以自己写一下,求出每个代数余子式,二阶的比较简单

骚题一道:

在这里插入图片描述

 

逆矩阵

  • 逆矩阵的定义:设 A A A n n n 阶方阵,若存在 n n n 阶方阵 B B B,使

    A B = B A = E AB=BA=E AB=BA=E

    则称 A A A 是可逆矩阵, B B B A A A 的逆矩阵,记作 A − 1 A^{-1} A1,即 A − 1 = B A^{-1}=B A1=B

    注:不是所有的方阵都有逆矩阵。所以方阵分为可逆和不可逆两种。

  • 若方阵 A A A 可逆,则 A A A 的矩阵是唯一的。

    证明:若存在 A B 1 = B 1 A = E , A B 2 = B 2 A = E AB_1=B_1A=E,AB_2=B_2A=E AB1=B1A=E,AB2=B2A=E,

    B 1 = B 1 E = B 1 ( A B 2 ) = ( B 1 A ) B 2 = E B 2 = B 2 B_1=B_1E=B_1(AB_2)=(B_1A)B_2=EB_2=B2 B1=B1E=B1(AB2)=(B1A)B2=EB2=B2,所以 B 1 = B 2 B_1=B_2 B1=B2

  • A A A n n n 阶方阵,若 ∣ A ∣ ≠ 0 |A| \not= 0 A=0,称 A A A 是非奇异矩阵,若 ∣ A ∣ = 0 |A|=0 A=0,称 A A A 是奇异矩阵

  • 方阵 A A A 可逆的充分必要条件是 A A A 为非奇异矩阵,即 ∣ A ∣ ≠ 0 |A| \not= 0 A=0,并且当 A A A 可逆时, A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

    证明:充分性:因为 ∣ A ∣ ≠ 0 |A| \not= 0 A=0,又有 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE,同除以 ∣ A ∣ |A| A,就有了 A ( 1 ∣ A ∣ A ∗ ) = ( 1 ∣ A ∣ A ∗ ) A = E A(\frac{1}{|A|}A^*)=(\frac{1}{|A|}A^*)A=E A(A1A)=(A1A)A=E,满足逆矩阵的定义,所以 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

    ​ 必要性:若 A A A 可逆,则 A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA1=A1A=E,两边取行列式,有 ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 |A||A^{-1}|=|E|=1 A∣∣A1=E=1,所以 ∣ A ∣ ≠ 0 |A| \not= 0 A=0

    注:这种求逆矩阵的方法叫伴随矩阵法(但是太麻烦了,一般不用,一般用的是初等行变换法,后面会讲)

  • 对角形矩阵 A A A 可逆的充要条件是主对角线的元素都不等于 0,并且 A − 1 A^{-1} A1 等于主对角线元素取倒数

  • 推论:设 A A A n n n 阶方阵,若存在 n n n 阶方阵 B B B,使 A B = E AB=E AB=E B A = E BA=E BA=E,则 A A A 可逆,且 A − 1 = B A^{-1}=B A1=B。(这里是比定义少了一个条件,只需要证明 A B = E AB=E AB=E 即可证明 A A A 可逆)

    证明:若 A B = E AB=E AB=E,两边取行列式有 ∣ A ∣ ∣ B ∣ = ∣ E ∣ = 1 |A||B|=|E|=1 A∣∣B=E=1,则 ∣ A ∣ ≠ 0 |A| \not= 0 A=0,故 A A A 可逆

    ​ 若 A B = E AB=E AB=E,两边左乘 A − 1 A^{-1} A1,有 A − 1 A B = A − 1 E A^{-1}AB=A^{-1}E A1AB=A1E,则 E B = A − 1 E EB=A^{-1}E EB=A1E,所以 A − 1 = B A^{-1}=B A1=B

    要强调的点⭐⭐⭐:1)在对矩阵两边取行列式时,一定要保证两边的矩阵是方阵;2)注意矩阵的左乘和右乘;3)在写 A − 1 A^{-1} A1 的时候一定要注意 A A A 是否可逆,要么题干中说了,要么自己证明了

    骚题一道:

    在这里插入图片描述

  • 可逆矩阵的性质:

    • 若方阵 A A A 可逆,则其逆矩阵 A − 1 A^{-1} A1 也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A

      证明:因为 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0

      A A − 1 = E AA^{-1}=E AA1=E,两边取行列式有 ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 |A||A^{-1}|=|E|=1 A∣∣A1=E=1,所以 ∣ A − 1 ∣ ≠ 0 |A^{-1}|\not=0 A1=0,则 A − 1 A^{-1} A1 可逆

      因为 A − 1 A^{-1} A1 可逆,则 A − 1 A = A A − 1 = E A^{-1}A=AA^{-1}=E A1A=AA1=E,所以 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A (根据逆矩阵的定义,也可用推论)

    • 若方阵 A A A 可逆,则 A T A^T AT 也可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

      证明:因为 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0,所以 ∣ A T ∣ ≠ 0 |A^T|\not=0 AT=0

      A T ( A − 1 ) T = ( A − 1 A ) T = E T = E A^T(A^{-1})^T=(A^{-1}A)^T=E^T=E AT(A1)T=(A1A)T=ET=E,所以 A T A^T AT 的逆矩阵是 ( A − 1 ) T (A^{-1})^T (A1)T,即 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

      所以矩阵的逆和转置可以交换顺序。

    • A A A 可逆, k k k 为非零常数,则 k A kA kA 也可逆,且 ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k} A^{-1} (kA)1=k1A1

      证明:因为 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0,则 ∣ k A ∣ = k n ∣ A ∣ ≠ 0 |kA|=k^n|A|\not=0 kA=knA=0,则 k A kA kA 可逆;

      k A ⋅ 1 k A − 1 = A A − 1 = E kA\cdot \frac{1}{k} A^{-1}=AA^{-1}=E kAk1A1=AA1=E,故 ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k} A^{-1} (kA)1=k1A1

      盘点:

      ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA

      ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

      ( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac{1}{k}A^{-1} (kA)1=k1A1

    • A A A 可逆,则 A ∗ A^* A 也可逆,且 ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A (A^*)^{-1}=(A^{-1})^*=\frac{1}{|A|}A (A)1=(A1)=A1A

      证明:因为 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0;又因为 ∣ A ∗ ∣ = ∣ A ∣ n − 1 ≠ 0 |A^*|=|A|^{n-1}\not=0 A=An1=0,所以 A ∗ A^* A 可逆;

      因为 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE,因为 ∣ A ∣ ≠ 0 |A|\not=0 A=0,同时除以 ∣ A ∣ |A| A,有 ( 1 ∣ A ∣ A ) A ∗ = A ∗ ( 1 ∣ A ∣ A ) = E (\frac{1}{|A|}A)A^*=A^*(\frac{1}{|A|}A)=E (A1A)A=A(A1A)=E,所以 ( A ∗ ) − 1 = 1 ∣ A ∣ A (A^*)^{-1}=\frac{1}{|A|}A (A)1=A1A

      因为 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A,则 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1,将 A A A 全部替换为 A − 1 A^{-1} A1,有 ( A − 1 ) ∗ = ∣ A − 1 ∣ ( A − 1 ) − 1 = 1 ∣ A ∣ A (A^{-1})^*=|A^{-1}|(A^{-1})^{-1}=\frac{1}{|A|}A (A1)=A1(A1)1=A1A,第二个等号是因为 A A − 1 = E AA^{-1}=E AA1=E,则两边区行列式有 ∣ A ∣ ∣ A − 1 ∣ = E |A||A^{-1}|=E A∣∣A1=E,则 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1

    • A , B A,B A,B 为同阶可逆方阵,则 A B AB AB 也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

      证明:因为 A , B A,B A,B 可逆,则 ∣ A ∣ ≠ 0 , ∣ B ∣ ≠ 0 |A|\not=0,|B|\not=0 A=0,B=0,所以 ∣ A B ∣ = ∣ A ∣ ⋅ ∣ B ∣ ≠ 0 |AB|=|A|\cdot|B|\not=0 AB=AB=0,所以 A B AB AB 可逆;

      A B ⋅ B − 1 A − 1 = A E A − 1 = A A − 1 = E AB\cdot B^{-1}A^{-1}=AEA^{-1}=AA^{-1}=E ABB1A1=AEA1=AA1=E,所以 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

    • A A A 可逆, m m m 为正整数,则 A m A^m Am 也可逆,且 ( A m ) − 1 = ( A − 1 ) m (A^m)^{-1}=(A^{-1})^m (Am)1=(A1)m

      证明:因为 A A A 可逆,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0,则 ∣ A m ∣ = ∣ A ∣ m ≠ 0 |A^m|=|A|^m\not=0 Am=Am=0,所以 A m A^m Am 可逆

    • A A A 可逆,则 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1

      证明:因为 A A − 1 = E AA^{-1}=E AA1=E,则两边区行列式有 ∣ A ∣ ∣ A − 1 ∣ = E |A||A^{-1}|=E A∣∣A1=E,则 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1

    • A A A 可逆,则 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

      前面证明过

骚题一道:

在这里插入图片描述

 

矩阵方阵

A , B A,B A,B 均为可逆矩阵,则矩阵方程

  • A X = C AX=C AX=C,左乘 A − 1 A^{-1} A1 得其解为 X = A − 1 C X=A^{-1}C X=A1C (切记⭐⭐⭐⭐⭐矩阵不能放分母,也就是 X = C A X=\frac{C}{A} X=AC是一个严重错误)
  • X A = C XA=C XA=C,右乘 A − 1 A^{-1} A1 得其解为 X = C A − 1 X=CA^{-1} X=CA1
  • A X B = C AXB=C AXB=C,左乘 A − 1 A^{-1} A1 右乘 B − 1 B^{-1} B1 得其解为 X = A − 1 C B − 1 X=A^{-1}CB^{-1} X=A1CB1

 

矩阵的初等变换

矩阵的初等变换分为:行变换和列变换

  • 矩阵的以下三种变换,称为矩阵的初等行(列)变换

    • 交换矩阵的两行(列)
    • 用数 k ≠ 0 k\not=0 k=0 乘矩阵某一行(列)的所有元素
    • 把矩阵的某一行(列)所有元素的 l l l 倍加到另一行(列)对于的元素上去
  • 标准形矩阵的特点:元素只有两个数 1 和 0 组成,且矩阵的左上角是一个单位矩阵,其余元素全为 0.(不一定是方阵)

    在这里插入图片描述

  • 任何矩阵都可以经过初等变换(行变换和列变换)化为标准形矩阵,并称此标准形矩阵为标准形

    提前知:标准形中的 “1” 的个数等于矩阵的秩 r ( A ) r(A) r(A)

  • 行阶梯形矩阵:

    • 如果矩阵存在零行,则零行都在非零行的下面
    • 任一非零行从左到右第一个非零元素(称为首非零元)所在的列中,在这个元素左下方的元素(若还有)全为零

    在这里插入图片描述

    “阶梯中” “竖线”只能画一个 “横线”可以多个

  • 特别地,若行阶梯形矩阵的首非零元都是 1,且首非零元所在列上的其他元素都为零,则称此矩阵为行简化阶梯形矩阵

    在这里插入图片描述

    任何一个矩阵都可以经过行变换化为阶梯形,再经过行变换化为行简化阶梯形

    只用行变换,矩阵的阶梯形不是唯一的,但是行简化阶梯形是唯一的。

 

初等矩阵

  • 初等矩阵的定义:由单位矩阵 E E E 经过一次初等行(列)变换所得到的矩阵,称为初等矩阵,初等矩阵有下面三种类型:

    • 交换单位矩阵的其中两行(列),表示为 E ( i j ) E(ij) E(ij)。交换 i , j i,j i,j 行和交换 i , j i,j i,j 列得到的初等矩阵是相同的
    • 用非零数 k k k 乘单位矩阵的第 i i i 行(列),表示为 E ( i ( k ) ) E(i(k)) E(i(k)),乘行列得到的初等矩阵相同
    • 把单位矩阵的第 j j j 行(列)的 l l l 倍加到第 i i i 行(列)得到的初等矩阵,表示为 E ( i j ( l ) ) E(ij(l)) E(ij(l)),这里行列的变换是不相等的,题目中会有说明是行变换还是列变换
  • 初等矩阵的性质:

    • 初等矩阵的行列式都不为零,

      ∣ E ( i j ) ∣ = − 1 ,        ∣ E ( i ( k ) ∣ = k ,        ∣ E ( i j ( l ) ) ∣ = 1 |E(ij)|=-1,~~~~~~|E(i(k)|=k,~~~~~~|E(ij(l))|=1 E(ij)=1,      E(i(k)=k,      E(ij(l))=1

    • 初等矩阵的转置矩阵仍为同种类型的初等矩阵

      E ( i j ) T = E ( i j ) ,        E ( i ( k ) ) T = E ( i ( k ) ) ,        E ( i j ( l ) ) T = E ( j i ( l ) ) E(ij)^T=E(ij),~~~~~~E(i(k))^T=E(i(k)),~~~~~~E(ij(l))^T=E(ji(l)) E(ij)T=E(ij),      E(i(k))T=E(i(k)),      E(ij(l))T=E(ji(l)),注意⭐⭐⭐第三种

    • 初等矩阵都可逆,且初等矩阵的逆矩阵仍为同种类型的初等矩阵

      E ( i j ) − 1 = E ( i j ) ,      E ( i ( k ) ) − 1 = E ( i ( 1 k ) ) ,      E ( i j ( l ) ) − 1 = E ( i j ( − l ) ) E(ij)^{-1}=E(ij),~~~~E(i(k))^{-1}=E(i(\frac{1}{k})),~~~~E(ij(l))^{-1}=E(ij(-l)) E(ij)1=E(ij),    E(i(k))1=E(i(k1)),    E(ij(l))1=E(ij(l))

  • 初等矩阵与矩阵的初等变换的关系⭐⭐⭐⭐⭐

    A A A m × n m\times n m×n 矩阵,则

    A A A 进行一次初等行变换得到的矩阵,等于用同种类型的 m m m 阶初等矩阵左乘 A A A

    A A A 进行一次初等列变换得到的矩阵,等于用同种类型的 m m m 阶初等矩阵右乘 A A A

    举个例子:

    在这里插入图片描述

 

矩阵的等价

  • 若矩阵 A A A 可经过有限次初等变换化为矩阵 B B B,则称 A A A B B B 等价,记作 A ≅ B A \cong B AB

  • 矩阵等价的性质:

    • 反身性:对任何矩阵 A A A,都有 A ≅ A A\cong A AA
    • 对称性:若矩阵 A ≅ B A \cong B AB,则 B ≅ A B \cong A BA
    • 传递性:若矩阵 A ≅ B A \cong B AB B ≅ C B \cong C BC,则 A ≅ C A \cong C AC
  • 矩阵等价的有关结论:

    • 任意一个矩阵 A m × n A_{m\times n} Am×n 都和其标准形矩阵 D D D 等价

      注:如果不知道标准形,请看上面一节——矩阵的初等变换

    • 矩阵 A ≅ B A \cong B AB 的充要条件是存在一系列初等矩阵 P 1 , P 2 , ⋯   , P s , Q 1 , Q 2 , ⋯   , Q t P_1,P_2,\cdots,P_s,Q_1,Q_2,\cdots,Q_t P1,P2,,Ps,Q1,Q2,,Qt,使 P s … P 2 P 1 A Q 1 Q 2 ⋯ Q t = B P_s\dots P_2P_1AQ_1Q_2\cdots Q_t=B PsP2P1AQ1Q2Qt=B

    • 矩阵 A ≅ B A \cong B AB 的充要条件是存在可逆矩阵 P , Q P,Q P,Q,使 P A Q = B PAQ=B PAQ=B,也就是将上一条结论中 A A A 左右两边的多个初等矩阵乘为一个矩阵

    • 若矩阵 A ≅ B A \cong B AB,则 A A A B B B 的标准形相同

    • 若矩阵 A ≅ B A \cong B AB,则 A A A B B B 的秩相等,即 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

      注:有关秩的概念后面讲

    • 若矩阵 A , B A,B A,B 为同型矩阵,则 A ≅ B A \cong B AB 的充要条件使 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

    • A , B A,B A,B 为同阶方阵,且 A ≅ B A \cong B AB,则 ∣ A ∣ = k ∣ B ∣ ( k ≠ 0 ) |A|=k|B|(k\not=0) A=kB(k=0)

      P s … P 2 P 1 A Q 1 Q 2 ⋯ Q t = B P_s\dots P_2P_1AQ_1Q_2\cdots Q_t=B PsP2P1AQ1Q2Qt=B 该式两边取行列式即可得到,还可以发现,若 ∣ B ∣ = 0 |B|=0 B=0,则 ∣ A ∣ = 0 |A|=0 A=0;反之若 ∣ B ∣ ≠ 0 |B|\not=0 B=0,则 ∣ A ∣ ≠ 0 |A|\not=0 A=0

    • A , B A,B A,B 为同阶方阵,且 A ≅ B A \cong B AB,则 A , B A,B A,B 同时可逆,或者同时不可逆

    • A A A n n n 阶方阵,则 A A A 可逆的充要条件为 A ≅ E A \cong E AE

      P s … P 2 P 1 A Q 1 Q 2 ⋯ Q t = 标准形 P_s\dots P_2P_1AQ_1Q_2\cdots Q_t=标准形 PsP2P1AQ1Q2Qt=标准形 该式两边取行列式,因为 P s ≠ 0 , A ≠ 0 , Q t ≠ 0 P_s\not=0,A\not=0,Q_t\not=0 Ps=0,A=0,Qt=0,所以 A A A 的标准形的行列式不为0,那么该标准形只能是单位矩阵

    • A A A 为方阵,则 A A A 可逆的充要条件是 A A A 可以表示为有限个初等矩阵的乘积

 

初等行变换法求逆矩阵

  • 推导:若 A A A 可逆,则 A − 1 A^{-1} A1 也可逆,因为根据前面的结论:设 A A A 为方阵,则 A A A 可逆的充要条件是 A A A 可以表示为有限个初等矩阵的乘积

    则有: A − 1 = P 1 ⋯ P s A^{-1}=P_1\cdots P_s A1=P1Ps,两边右乘 A A A,有 E = P 1 ⋯ P s A E=P_1\cdots P_sA E=P1PsA,则有以下两个式子:

    P 1 ⋯ P s A = E P_1\cdots P_sA=E P1PsA=E

    P 1 … P s E = A − 1 P_1\dots P_sE=A^{-1} P1PsE=A1

    表示对 A A A E E E 做同样的初等行变换 A A A 化为了 E E E,而 E E E 化为了 A − 1 A^{-1} A1,切记切记一定是初等行变换

  • 初等行变换法求逆矩阵的方法:在这里插入图片描述

    注:这里没有判断 A A A 的行列式是否为0,可以直接求,如果 B B B 化不为成单位矩阵,则表示 A A A 不可逆。

  • 一种简单的方法:(但有非常大的局限性)

    在这里插入图片描述

    注⭐⭐⭐⭐⭐:只能求解矩阵方程 A X = B AX=B AX=B

    原理和前面的相似:若 A A A 可逆,则 A − 1 A^{-1} A1 也可逆,则: A − 1 = P 1 ⋯ P s A^{-1}=P_1\cdots P_s A1=P1Ps,则将 A − 1 B = X A^{-1}B=X A1B=X 写为: P 1 ⋯ P s B = X P_1\cdots P_sB=X P1PsB=X。再将 A − 1 = P 1 ⋯ P s A^{-1}=P_1\cdots P_s A1=P1Ps 右乘 A A A 有: P 1 ⋯ P s A = E P_1\cdots P_sA=E P1PsA=E

    则有以下两个式子:

    P 1 ⋯ P s A = E P_1\cdots P_sA=E P1PsA=E

    P 1 … P s B = X P_1\dots P_sB=X P1PsB=X

    表示对 A A A B B B 做同样的初等行变换 A A A 化为了 E E E,而 B B B 化为了 X X X,而 X = A − 1 B X=A^{-1}B X=A1B

  • 还有一种形式是: X A = B XA=B XA=B,是需要做列变换:

    在这里插入图片描述

 

分块矩阵

  • 就是将矩阵分为多个小的矩阵

  • 可以按行分,按列分

  • 特殊的可以分为上三角分块矩阵、下三角分块矩阵、对角形分块矩阵

  • 分块矩阵的加法和数乘,和矩阵的乘法相同

  • 分块矩阵的乘法和矩阵的乘法相同,但是要注意相乘的是两个子块矩阵,要注意矩阵的左乘和右乘

  • 分块矩阵的转置:

    • 子块矩阵行列互换
    • 互换之后每个子块求转置
  • 分块矩阵的逆矩阵:

    • 在这里插入图片描述

    • 在这里插入图片描述

      注:这两种用的少,要证明的话将前后两个矩阵相乘,看得到的矩阵是否是单位矩阵

    • 一个简单的分块矩阵求逆:在这里插入图片描述

    • 另一种简单的分块矩阵求逆在这里插入图片描述

  • 分块矩阵的行列式:

    • 如果分块是三角形分块矩阵,则分块矩阵的行列式是主对角线子矩阵行列式的乘积,(联想普通矩阵的行列式)
    • 如果是副对角线:在这里插入图片描述

 

矩阵的秩

  • 设矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n,在 A A A 种任取 k k k k k k ( k ⩽ m i n ( m , n ) ) (k\leqslant min(m,n)) (kmin(m,n)),位于这些行列交叉点处的 k 2 k^2 k2 个元素,按照它们在 A A A 中的所处位置保持不变,得到的 k k k 阶行列式,称为矩阵 A A A 的一个 k k k 阶子式。

  • 矩阵的秩:矩阵 A A A 中非零子式的最高阶数,称为矩阵 A A A 的秩,记作 r ( A ) r(A) r(A)

    所以矩阵的秩: 0 ⩽ r ( A ) ⩽ m i n ( m , n ) 0\leqslant r(A)\leqslant min(m,n) 0r(A)min(m,n)

    规定零矩阵的秩是 0

    如果 A ≠ 0 A\not=0 A=0,则 r ( A ) ⩾ 1 r(A)\geqslant 1 r(A)1

  • A A A m × n m\times n m×n 矩阵,若 r ( A ) = m i n ( m , n ) r(A)=min(m,n) r(A)=min(m,n),称 A A A 为满秩矩阵

    若 r ( A ) = m ,称 A 为行满秩矩阵 若 r ( A ) = n ,称 A 为列满秩矩阵 } = A 为满秩矩阵 \left. \begin{matrix} 若r(A)=m,称 A 为行满秩矩阵 \\若r(A)=n,称 A 为列满秩矩阵 \end{matrix} \right\}=A 为满秩矩阵 r(A)=m,称A为行满秩矩阵r(A)=n,称A为列满秩矩阵}=A为满秩矩阵

    r ( A ) < m i n ( m , n ) r(A)<min(m,n) r(A)<min(m,n),称 A A A 为降秩矩阵

    特别的,若 A A A n n n 阶方阵,若 r ( A ) = n r(A)=n r(A)=n,称 A A A 为满秩矩阵

    r ( A ) < n r(A)<n r(A)<n,称 A A A 为降秩矩阵

  • 由定义可知:若 A A A n n n 阶方阵,则

    • A A A 满秩    ⟺    r ( A ) = n    ⟺    ∣ A ∣ ≠ 0    ⟺    A \iff r(A)=n \iff |A| \not=0 \iff A r(A)=nA=0A 可逆    ⟺    A \iff A A 非奇异
    • A A A 降秩    ⟺    r ( A ) < n    ⟺    ∣ A ∣ = 0    ⟺    A \iff r(A)<n \iff |A| =0 \iff A r(A)<nA=0A 不可逆    ⟺    A \iff A A 奇异
  • 矩阵秩的结论:

    • r ( A ) = r ( r > 0 )    ⟺    r(A)=r(r>0) \iff r(A)=r(r>0) 矩阵 A A A 中至少有一个 r r r 阶子式不等于零,而所有的 r + 1 r+1 r+1 阶子式全等于零(或根本没有 r + 1 r+1 r+1 阶子式)

      这里没有说 r + 2 , r + 3 … r+2,r+3 \dots r+2,r+3 是因为也全部都是零

      举个例子:现在有一个 r + 2 r+2 r+2 阶子式,按照某一行展开,是对应元素乘对应的代数余子式,而现在 r + 1 r+1 r+1 阶子式全为0,所以 r + 2 r+2 r+2 阶子式全为零(不理解的可以写一下行列式按行展开)

    • r ( A ) ⩾ r    ⟺    r(A)\geqslant r\iff r(A)r 矩阵 A A A 中至少有一个 r r r 阶子式不等于零

    • r ( A ) < r    ⟺    r(A)<r\iff r(A)<r 矩阵 A A A 中所有 r r r 阶以上子式全等于零

    • r ( A ) = r ( A T ) ,     r ( A ) = r ( − A ) ,     r ( k A ) = r ( A ) , ( k ≠ 0 ) r(A)=r(A^T),~~~r(A)=r(-A),~~~r(kA)=r(A),(k\not=0) r(A)=r(AT),   r(A)=r(A),   r(kA)=r(A),(k=0)

    • r ( A ) = 0    ⟺    A = 0 ,     r ( A ) ⩾ 1    ⟺    A ≠ 0 r(A)=0 \iff A=0,~~~r(A)\geqslant 1 \iff A\not=0 r(A)=0A=0,   r(A)1A=0

    • A ≠ 0 A\not=0 A=0,则 A A A 的任意两行(列)元素对应成比例    ⟺    \iff r ( A ) = 1 r(A)=1 r(A)=1

    • A A A行阶梯形矩阵,则 r ( A ) = A r(A)=A r(A)=A 中非零行的个数

      证明:如果存在一个阶梯形矩阵,则在取子式的时候,取非零行及首非零元所在的列,这样保证了非零元在子式的主对角线上,所以该子式不为零,也就是非零子式的最高阶数

    • 初等变换(行,列)不改变矩阵的秩,即 若 A ≅ B A\cong B AB,则 r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)

    • A , B A,B A,B 为同型矩阵,则 A ≅ B    ⟺    r ( A ) = r ( B ) A\cong B\iff r(A)=r(B) ABr(A)=r(B)

    • A A A 的标准形 D D D 为方阵,则 r ( A ) = D r(A)=D r(A)=D 中 1 的个数

    • A , B A,B A,B 同为 m × n m\times n m×n 矩阵,则 r ( A ) ± B ⩽ r ( A ) + r ( B ) r(A)\pm B\leqslant r(A)+r(B) r(A)±Br(A)+r(B) (注意后面没有减号)(后面会证明)

    • A A A m × n m\times n m×n 矩阵, B B B 同为 n × s n\times s n×s 矩阵,则 r ( A ) + r ( B ) − n ⩽ r ( A B ) ⩽ m i n ( r ( A ) , r ( B ) ) r(A)+r(B)-n\leqslant r(AB) \leqslant min(r(A),r(B)) r(A)+r(B)nr(AB)min(r(A),r(B)) (后面会证明)

    • A A A m × n m\times n m×n 矩阵, B B B 同为 n × s n\times s n×s 矩阵,且 A B = 0 AB=0 AB=0,则 r ( A ) + r ( B ) ⩽ n r(A)+r(B)\leqslant n r(A)+r(B)n (后面会证明)

    • r ( A T A ) = r ( A A T ) = r ( A ) = r ( A T ) r(A^TA)=r(AA^T)=r(A)=r(A^T) r(ATA)=r(AAT)=r(A)=r(AT) (后面会证明)

    • P , Q P,Q P,Q 均为可逆矩阵,则 r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)

      证明:可逆矩阵可以表示为许多初等矩阵的乘积,所以矩阵 A A A 左乘一系列初等矩阵表示初等行变换,右乘一系列初等矩阵表示初等列变换,而对一个矩阵做初等变换矩阵的秩不变

    • A A A n n n 阶方阵 ( n ⩾ 2 ) (n\geqslant2) (n2) A ∗ A^* A A A A 的伴随矩阵,则

      r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\left\{\begin{matrix}n,r(A)=n \\1,r(A)=n-1\\0,r(A)<n-1\end{matrix}\right. r(A)= n,r(A)=n1,r(A)=n10,r(A)<n1

  • 矩阵秩的求法:

    • 定义法:找到矩阵 A A A 中不为零的 r r r 阶子式,而所有大于 r r r 阶的子式全为零,或没有大于 r r r 阶的子式
    • 初等变换法:利用矩阵的初等变换将矩阵化为行阶梯形矩阵,则行阶梯形矩阵的非零行数即为矩阵的秩(因为初等变换不改变矩阵的秩,一般只做初等行变换)
    • 行列式法:若 A A A n n n 方阵,求 ∣ A ∣ { 若 ∣ A ∣ ≠ 0 = > r ( A ) = n 若 ∣ A ∣ = 0 = > r ( A ) < n |A|\left\{\begin{matrix}若|A|\not=0=>r(A)=n \\若|A|=0=>r(A)<n\end{matrix}\right. A{A=0=>r(A)=nA=0=>r(A)<n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值