关于EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples的理解

在本文中,作者基于之前的Carlini & Wagner攻击提出了一些新的改进,从而在确保攻击成功率的情况下,增强了攻击的可转移性。   作者仍然沿用之前C&W攻击的目标函数f(x,t)f(x,t)f(\boldsymbol{x},t): f(x...

2018-04-22 23:22:46

阅读数:100

评论数:0

关于Distributional Smoothing with Virtual Adversarial Training的理解

作者受之前Goodfellow的adversarial training的启发,提出了一种叫局部分布性平滑(LDS) 的方法,这是统计模型的一个新的光滑概念,可以用作正则化术语来促进模型分布的平滑。作者将基于LDS的正则化命名为虚拟对抗训练 (VAT)。   下面简单介绍一下LDS:我们先固定模...

2018-04-17 10:22:12

阅读数:414

评论数:0

关于Towards evaluating the robustness of neural networks的理解

由于之前提出的防御性蒸馏实际上是一种"梯度遮蔽"的方法,作者也给出了防御性蒸馏有效性的解释,详见之前关于防御性蒸馏的文章,和那里面说的一样;不过关于jsma中选择像素对来进行修改的方法,作者做出了不一样的解释:   假设softmax层最小的输入为-100,那...

2018-04-11 22:12:07

阅读数:532

评论数:2

关于Adversarial Machine Learning at Scale的理解

Goodfellow基于之前的FGSM攻击方法做出了一部分改进。鉴于之前的FGSM的成功率并不高(在imageNet上仅有63%−69%63%−69%63\%-69\%)。Goodfellow做出了一些改进,从原先的以增加原始类别标记的损失函数为目标变为了减少目标类别的损失函数为目标: Xadv...

2018-04-02 15:20:33

阅读数:525

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭