【Ybtoj 第27章例3】路径长度【期望问题】

最短路径期望算法及其应用
该博客介绍了如何使用最短路径期望算法解决图中节点间路径长度的期望值问题。通过Dijkstra的一种变种,文章详细阐述了算法的思路和实现过程,包括邻接表的构建、队列的使用以及权重更新。最后,通过一个实例展示了算法的运行,并给出了C++代码实现,输出了从特定节点到所有其他节点的期望路径长度。

在这里插入图片描述
在这里插入图片描述


解题思路

ansians_iansi 表示从iii出发到n nn的路径总长度的期望 gig_igiiii的出度 每个点走向它连的点概率为1gi\frac{1}{g_i}gi1 就有 ansi=∑jansj+w(i−>j)gians_i=\sum_j\frac{ans_j+w(i->j)}{g_i}ansi=jgiansj+w(i>j)


代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#define ll long long
#define ldb long double
using namespace std;

int n,m,u,v,w,k,num[100010],head[100010],d[100010];
ldb ans[100010];

struct c{
	int x,next,w;
}a[2000010];

void add(int x,int y,int w)
{
	a[++k].x=y;
	a[k].w=w;
	a[k].next=head[x];
	head[x]=k;
}

void work(){
	queue<int> q;
	q.push(n);
	while(!q.empty())
	{
		int x=q.front();q.pop();
		for(int i=head[x];i;i=a[i].next)
		{
			int y=a[i].x;
			d[y]--;
			ans[y]+=(ans[x]+a[i].w)*1.0/num[y]*1.0;
			if(d[y]==0)
				q.push(y);
		}
	}
}

int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&u,&v,&w);
		add(v,u,w);
		d[u]++;
		num[u]++; 
	}
	work();
	printf("%.2Lf",ans[1]);
}
### ybtoj 平台问题21276题目详情 ybtoj平台上的编号为21276的问题涉及一种基于区间的动态规划算法,即区间DP。这类问题通常围绕特定的操作序列展开,在这个问题中是以消除木块为核心[^1]。 #### 动态规划定义与思路 对于该类问题的核心在于如何定义状态以及转移方程的设计。在此案里,`dp[i][j]`表示从第i个位置到第j个位置之间完成目标所需的最小代价或最优解路径数。通过这种方式可以有效地减少重复计算并优化整体性能表现。 #### 解决方案概述 解决方案采用了递归的方式来进行动态规划求解而不是传统的迭代方法。这种方法不仅简化了逻辑实现还保持了较低的时间复杂度。具体来说,当面对一系列待处理的数据时(比如一排不同颜色的木块),程序会尝试找到能够一次性清除最多相同类型的连续子串,并将其作为基础情况来构建更复杂的场景解答。 ```python def solve(dp, i, j): if i > j: return 0 while (i < j) and (blocks[j] != blocks[i]): j -= 1 if i == j: return scores[1] # Case where we merge the same color at both ends. res = solve(dp, i + 1, j - 1) + scores[2] # Try merging with any other matching block before &#39;i&#39;. for k in range(i + 1, j): if blocks[k] == blocks[i]: res = max(res, solve(dp, i + 1, k - 1) + solve(dp, k, j)) dp[i][j] = res return res ``` 此代码片段展示了如何利用Python语言编写解决此类问题的方法之一。注意这里假设存在两个全局变量`blocks[]`存储每一块的颜色信息和`scores[]`记录对应数量得分表;同时为了防止多次访问相同的索引组合而引入了一个二维数组`dp[][]`用于缓存中间结果以提高效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值