caffe中文件参数设置(四):其它常用层及其参数设置

标签: caffe 常用层 参数设置 dropout Layer
64人阅读 评论(0) 收藏 举报
分类:

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。

1、softmax-loss

softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic Regression 只能用于二分类,而softmax可以用于多分类。

softmax与softmax-loss的区别:

softmax计算公式:

而softmax-loss计算公式:

关于两者的区别更加具体的介绍,可参考:softmax vs. softmax-loss

用户可能最终目的就是得到各个类别的概率似然值,这个时候就只需要一个 Softmax层,而不一定要进行softmax-Loss 操作;或者是用户有通过其他什么方式已经得到了某种概率似然值,然后要做最大似然估计,此时则只需要后面的 softmax-Loss 而不需要前面的 Softmax 操作。因此提供两个不同的 Layer 结构比只提供一个合在一起的 Softmax-Loss Layer 要灵活许多。

不管是softmax layer还是softmax-loss layer,都是没有参数的,只是层类型不同而也

softmax-loss layer:输出loss值

    layer {  
      name: "loss"  
      type: "SoftmaxWithLoss"  
      bottom: "ip1"  
      bottom: "label"  
      top: "loss"  
    }  
softmax layer: 输出似然值

    layers {  
      bottom: "cls3_fc"  
      top: "prob"  
      name: "prob"  
      type: “Softmax"  
    }  

2、Inner Product

全连接层,把输入当作成一个向量,输出也是一个简单向量(把输入数据blobs的width和height全变为1)。

输入: n*c0*h*w

输出: n*c1*1*1

全连接层实际上也是一种卷积层,只是它的卷积核大小和原数据大小一致。因此它的参数基本和卷积层的参数一样。

层类型:InnerProduct

lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

必须设置的参数:

    num_output: 过滤器(filfter)的个数

其它参数:

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
    layer {  
      name: "ip1"  
      type: "InnerProduct"  
      bottom: "pool2"  
      top: "ip1"  
      param {  
        lr_mult: 1  
      }  
      param {  
        lr_mult: 2  
      }  
      inner_product_param {  
        num_output: 500  
        weight_filler {  
          type: "xavier"  
        }  
        bias_filler {  
          type: "constant"  
        }  
      }  
    }  

3、accuracy

输出分类(预测)精确度,只有test阶段才有,因此需要加入include参数。

层类型:Accuracy
    layer {  
      name: "accuracy"  
      type: "Accuracy"  
      bottom: "ip2"  
      bottom: "label"  
      top: "accuracy"  
      include {  
        phase: TEST  
      }  
    }  

4、reshape

在不改变数据的情况下,改变输入的维度。

层类型:Reshape

先来看例子
    layer {  
        name: "reshape"  
        type: "Reshape"  
        bottom: "input"  
        top: "output"  
        reshape_param {  
          shape {  
            dim: 0  # copy the dimension from below  
            dim: 2  
            dim: 3  
            dim: -1 # infer it from the other dimensions  
          }  
        }  
      }  

有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。

dim:0  表示维度不变,即输入和输出是相同的维度。

dim:2 或 dim:3 将原来的维度变成2或3

dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。

假设原数据为:64*3*28*28, 表示64张3通道的28*28的彩色图片

经过reshape变换:

    reshape_param {  
          shape {  
            dim: 0   
            dim: 0  
            dim: 14  
            dim: -1   
          }  
        }  

输出数据为:64*3*14*56

5、Dropout

Dropout是一个防止过拟合的trick。可以随机让网络某些隐含层节点的权重不工作。

先看例子:

    layer {  
      name: "drop7"  
      type: "Dropout"  
      bottom: "fc7-conv"  
      top: "fc7-conv"  
      dropout_param {  
        dropout_ratio: 0.5  
      }  
    }layer {  
      name: "drop7"  
      type: "Dropout"  
      bottom: "fc7-conv"  
      top: "fc7-conv"  
      dropout_param {  
        dropout_ratio: 0.5  
      }  
    }  
只需要设置一个dropout_ratio就可以了。

以上转自:http://blog.csdn.net/langb2014/article/details/50457709


查看评论

(6)caffe总结之其它常用层及参数

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。 1、softmax-loss s...
  • u013289254
  • u013289254
  • 2017-04-20 21:14:03
  • 219

caffe SoftmaxWithLoss 层

loss 函数:      深度 学习 的 目标, 通过调整  w,b 参数, 得到一个 更小的 loss caffe 中的 loss 在Forward阶段产生     在Softmax...
  • stone_linclon
  • stone_linclon
  • 2016-06-17 16:29:46
  • 717

DL学习笔记【11】caffe参数调节-loss层

转自:http://www.cnblogs.com/lutingting/p/5240688.html 在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成...
  • Sun7_She
  • Sun7_She
  • 2016-07-26 13:38:18
  • 2490

Caffe常用层参数介绍

DATAlayers { name: "data" type: DATA top: "data" top: "label" data_param { source: ".....
  • Cheese_pop
  • Cheese_pop
  • 2016-07-25 16:50:44
  • 3091

深度学习caffe平台--train_val.prototxt文件中激活层(Activiation Layers)及参数及参数详解

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入...
  • liuweizj12
  • liuweizj12
  • 2016-08-08 16:19:40
  • 1169

caffe solver参数意义与设置

batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片;则,如果你的总图片张数为1280000张,则要想将你所有的图片通过...
  • qq_32206625
  • qq_32206625
  • 2016-09-22 11:27:01
  • 2585

DL学习笔记【12】caffe参数调节-数据层

转自:http://www.cnblogs.com/denny402/p/5070928.html 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Ale...
  • Sun7_She
  • Sun7_She
  • 2016-07-26 13:46:54
  • 1232

caffe常用层的参数设置说明

package caffe; 前面几个比较基础不介绍了,关于caffe blob一些介绍,还有一些数据输入的参数介绍就不介绍了这里酒介绍一些常用到的和比较新的层的参数设置参数。如需转载,请注明:转载自...
  • mxs30443
  • mxs30443
  • 2016-12-16 16:23:08
  • 5798

caffe中参数设置的解析

lenet_solver.prototxt: net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval:...
  • u013989576
  • u013989576
  • 2017-04-27 17:30:14
  • 2278

Reshape层和Dropout层参数说明

caffe/reshape/dropout
  • xymdsg
  • xymdsg
  • 2017-12-25 09:37:04
  • 103
    个人资料
    持之以恒
    等级:
    访问量: 3249
    积分: 337
    排名: 23万+
    文章存档
    最新评论