caffe中文件参数设置(四):其它常用层及其参数设置

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。

1、softmax-loss

softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic Regression 只能用于二分类,而softmax可以用于多分类。

softmax与softmax-loss的区别:

softmax计算公式:

而softmax-loss计算公式:

关于两者的区别更加具体的介绍,可参考:softmax vs. softmax-loss

用户可能最终目的就是得到各个类别的概率似然值,这个时候就只需要一个 Softmax层,而不一定要进行softmax-Loss 操作;或者是用户有通过其他什么方式已经得到了某种概率似然值,然后要做最大似然估计,此时则只需要后面的 softmax-Loss 而不需要前面的 Softmax 操作。因此提供两个不同的 Layer 结构比只提供一个合在一起的 Softmax-Loss Layer 要灵活许多。

不管是softmax layer还是softmax-loss layer,都是没有参数的,只是层类型不同而也

softmax-loss layer:输出loss值

    layer {  
      name: "loss"  
      type: "SoftmaxWithLoss"  
      bottom: "ip1"  
      bottom: "label"  
      top: "loss"  
    }  
softmax layer: 输出似然值

    layers {  
      bottom: "cls3_fc"  
      top: "prob"  
      name: "prob"  
      type: “Softmax"  
    }  

2、Inner Product

全连接层,把输入当作成一个向量,输出也是一个简单向量(把输入数据blobs的width和height全变为1)。

输入: n*c0*h*w

输出: n*c1*1*1

全连接层实际上也是一种卷积层,只是它的卷积核大小和原数据大小一致。因此它的参数基本和卷积层的参数一样。

层类型:InnerProduct

lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

必须设置的参数:

    num_output: 过滤器(filfter)的个数

其它参数:

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
    layer {  
      name: "ip1"  
      type: "InnerProduct"  
      bottom: "pool2"  
      top: "ip1"  
      param {  
        lr_mult: 1  
      }  
      param {  
        lr_mult: 2  
      }  
      inner_product_param {  
        num_output: 500  
        weight_filler {  
          type: "xavier"  
        }  
        bias_filler {  
          type: "constant"  
        }  
      }  
    }  

3、accuracy

输出分类(预测)精确度,只有test阶段才有,因此需要加入include参数。

层类型:Accuracy
    layer {  
      name: "accuracy"  
      type: "Accuracy"  
      bottom: "ip2"  
      bottom: "label"  
      top: "accuracy"  
      include {  
        phase: TEST  
      }  
    }  

4、reshape

在不改变数据的情况下,改变输入的维度。

层类型:Reshape

先来看例子
    layer {  
        name: "reshape"  
        type: "Reshape"  
        bottom: "input"  
        top: "output"  
        reshape_param {  
          shape {  
            dim: 0  # copy the dimension from below  
            dim: 2  
            dim: 3  
            dim: -1 # infer it from the other dimensions  
          }  
        }  
      }  

有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。

dim:0  表示维度不变,即输入和输出是相同的维度。

dim:2 或 dim:3 将原来的维度变成2或3

dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。

假设原数据为:64*3*28*28, 表示64张3通道的28*28的彩色图片

经过reshape变换:

    reshape_param {  
          shape {  
            dim: 0   
            dim: 0  
            dim: 14  
            dim: -1   
          }  
        }  

输出数据为:64*3*14*56

5、Dropout

Dropout是一个防止过拟合的trick。可以随机让网络某些隐含层节点的权重不工作。

先看例子:

    layer {  
      name: "drop7"  
      type: "Dropout"  
      bottom: "fc7-conv"  
      top: "fc7-conv"  
      dropout_param {  
        dropout_ratio: 0.5  
      }  
    }layer {  
      name: "drop7"  
      type: "Dropout"  
      bottom: "fc7-conv"  
      top: "fc7-conv"  
      dropout_param {  
        dropout_ratio: 0.5  
      }  
    }  
只需要设置一个dropout_ratio就可以了。

以上转自:http://blog.csdn.net/langb2014/article/details/50457709


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页