三尺冰冻

Where there is a will, there is a way.

HEAP CORRUPTION DETECTED:before Normal block(#102584) at 0x00000243EA0CB070

问题描述:这是在训练途中发生的错误,在训练前期一切正常,所以从数据的预处理和网络层的配置应该都是没有问题的。                  在迭  代到一定次数的时候发生了这个问题。(摘自网络)Debug error:Damage before/after normal block.如果编译器...

2018-02-15 09:40:11

阅读数:48

评论数:0

Check failed: data_

问题描述:显示数据错误    因为我起初的数据处理成了28*28的,而该网络层数设置较多,导致网络进行到池化层pool5的时候,输入图像持仓已经小于kernel核的大小了。经过池化之后,下一步输入就变成了0*0,所以会报错。解决办法:减少层数,或者增大数据预处理尺寸,或者减小kernel核。这个问...

2018-02-15 09:35:05

阅读数:185

评论数:0

Check failed:datum_height > = crop_size(32 vs.227)

根据提示,问题是crop_size的尺寸不匹配,该网络默认crop_size的尺寸是227*227,而我在数据的预处理阶段把数据处理成了32*32,所以会出现这个问题。解决办法:在train_val.prototxt文件中将其修改为32*32后就可以了。...

2018-02-15 09:31:44

阅读数:126

评论数:0

DL训练中电脑内存问题

本文主要译介自Graphcore在2017年1月的这篇博客: Why is so much memory needed for deep neural networks。介绍了深度学习中内存的开销,以及降低内存需求的几种解决方案。 为便于阅...

2018-02-10 16:54:31

阅读数:45

评论数:0

Check failed: proto SerializeToOstream(&output)

问题描述:这个问题我是在生成均值文件的时候提示的,我看网友们很多是在训练过程提示的。 Check failed: proto.SerializeToOstream(&output) 解决方法:我删掉了桌面的一些东西,竟然可以用了。感人,根本不知道是怎么解决的。(如果在训练过程中出现...

2018-02-05 14:54:34

阅读数:202

评论数:0

accuracy=0,loss=1.#QNAN(* 1 = 1.#QNAN loss)

这个问题可就复杂了,从头描述以下: 1、第一次训练遇到这个问题,如图 然后网友说,caffe的图像标签要从0开始,而且如果是3分类的问题的话,最后输出层要大于训练集的类别数目才可以,所以他把最后一层全连接层的输出改为了4或1000(>3),这个1000分类是什么鬼我不知道,应该是他用...

2018-02-05 14:51:08

阅读数:117

评论数:0

Failed to parse NetParameter file; has no field named "layer"

问题描述:Error parsing text-format caffe.NetParameter:150:7: Message type "caffe.LayerParameter" has no field   named"layer"     ...

2018-02-05 14:40:49

阅读数:82

评论数:0

label_value < num_labels(134 vs.134)

问题如图 问题描述:就是在我训练刚开始的时候,还没出现loss和accuracy信息的时候就出现的问题。我这次训练一共134类,所以数字显示是134 vs.134 解决方法: 我就是改了一下drop层的括号就可以了。。。。。。他说的是accuracy_layer的信息,我改了一下dr...

2018-02-05 14:31:30

阅读数:50

评论数:0

axis_index < num_axes()(1 vs. 1) axis 1 out of range for 1-D Blob with shape*

问题如图: 解决办法:在Layer层的设置上,去看一下是不是你的label和data放反了,如下图: 这两个top的顺序不能颠倒,必须是先data,后label。

2018-02-05 14:26:58

阅读数:193

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭