因为这个题:弱下定决心要好好做dp!因为代码跟poj 3666太像了!数学脑洞思维是真的需要啊
POJ 3666:求不升的DP
这个题是求升序的DP,那么有什么变化呢
不升的条件是:a【i】-a【j】>=0
升序的条件是:对任意的i,j:a【i】-a【j】>=i-j
看到什么了吗?移项有:a【i】-i>=a【j】-j
所以,把a数组变形一下,跟POJ3666就是一个题!
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define LL __int64
const int maxn=3050;
const LL INF=0x3f3f3f3f3f3f3f3f;
int n,m;
LL a[maxn],b[maxn];
LL dp[maxn][maxn];
int main(){
//freopen("input.txt","r",stdin);
while(scanf("%d",&n)!=EOF){
for(int i=1;i<=n;i++){
scanf("%I64d",&a[i]);
a[i]=a[i]-i;
b[i]=a[i];
}
sort(b+1,b+n+1);
m=1;
for(int i=2;i<=n;i++)
if (b[i]!=b[i-1]) b[++m]=b[i];
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
LL Min=INF;
for(int j=1;j<=m;j++){
Min=min(Min,dp[i-1][j]);
dp[i][j]=abs(b[j]-a[i])+Min;
}
}
LL ans=INF;
for(int i=1;i<=m;i++)
ans=min(ans,dp[n][i]);
printf("%I64d\n",ans);
}
return 0;
}